dussen commited on
Commit
fe46c62
·
1 Parent(s): 06f6060

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +3 -7
  2. app.py +36 -17
  3. requirements.txt +1 -1
README.md CHANGED
@@ -1,17 +1,13 @@
1
  ---
2
  title: Iris
3
  emoji: 🐢
4
- colorFrom: blue
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 4.1.2
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- requirements:
12
- - file: requirements.txt
13
- environment:
14
- HOPSWORKS_API_KEY: ${{ secrets.HOPSWORKS_API_KEY }}
15
  ---
16
 
17
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Iris
3
  emoji: 🐢
4
+ colorFrom: purple
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 3.5
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,30 +1,49 @@
1
  import gradio as gr
 
 
2
  import hopsworks
3
  import joblib
4
  import pandas as pd
5
- import numpy as np
6
  project = hopsworks.login()
7
  fs = project.get_feature_store()
8
 
 
9
  mr = project.get_model_registry()
10
  model = mr.get_model("iris_model", version=1)
11
  model_dir = model.download()
12
  model = joblib.load(model_dir + "/iris_model.pkl")
13
- feature_view = fs.get_feature_view(name="iris", version=1)
14
- batch_data = feature_view.get_batch_data()
15
-
16
- def greet(sep_length, sep_width, pet_length, pet_width):
17
- df = pd.DataFrame({ "sepal_length": sep_length, "sepal_width": sep_width, "petal_length": pet_length, "petal_width": pet_width}, index=[0])
18
- prediction = model.predict(df)[0]
19
- return prediction, f"Images\{prediction}.jpg"
20
 
21
- predict = gr.Interface(
22
- fn=greet,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  inputs=[
24
- gr.Textbox(placeholder="Sepal length here", label = "Sepal Length"),
25
- gr.Textbox(placeholder="Sepal width here", label = "Sepal Width"),
26
- gr.Textbox(placeholder="Petal length here", label = "Petal Length"),
27
- gr.Textbox(placeholder="Petal width here", label = "Petal Width")],
28
- outputs=[gr.Textbox(label = "Prediction"), gr.Image(type="pil", label="Iris")],
29
- )
30
- predict.launch()
 
 
 
1
  import gradio as gr
2
+ from PIL import Image
3
+ import requests
4
  import hopsworks
5
  import joblib
6
  import pandas as pd
7
+
8
  project = hopsworks.login()
9
  fs = project.get_feature_store()
10
 
11
+
12
  mr = project.get_model_registry()
13
  model = mr.get_model("iris_model", version=1)
14
  model_dir = model.download()
15
  model = joblib.load(model_dir + "/iris_model.pkl")
16
+ print("Model downloaded")
 
 
 
 
 
 
17
 
18
+ def iris(sepal_length, sepal_width, petal_length, petal_width):
19
+ print("Calling function")
20
+ # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
21
+ df = pd.DataFrame([[sepal_length,sepal_width,petal_length,petal_width]],
22
+ columns=['sepal_length','sepal_width','petal_length','petal_width'])
23
+ print("Predicting")
24
+ print(df)
25
+ # 'res' is a list of predictions returned as the label.
26
+ res = model.predict(df)
27
+ # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
+ # the first element.
29
+ # print("Res: {0}").format(res)
30
+ print(res)
31
+ flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
32
+ img = Image.open(requests.get(flower_url, stream=True).raw)
33
+ return img
34
+
35
+ demo = gr.Interface(
36
+ fn=iris,
37
+ title="Iris Flower Predictive Analytics",
38
+ description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
39
+ allow_flagging="never",
40
  inputs=[
41
+ gr.inputs.Number(default=2.0, label="sepal length (cm)"),
42
+ gr.inputs.Number(default=1.0, label="sepal width (cm)"),
43
+ gr.inputs.Number(default=2.0, label="petal length (cm)"),
44
+ gr.inputs.Number(default=1.0, label="petal width (cm)"),
45
+ ],
46
+ outputs=gr.Image(type="pil"))
47
+
48
+ demo.launch(debug=True)
49
+
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
  hopsworks
2
  joblib
3
- sklearn
 
1
  hopsworks
2
  joblib
3
+ scikit-learn==1.1.1