dussen commited on
Commit
11cc978
·
1 Parent(s): 71e164a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +5 -5
  2. app.py +21 -39
  3. requirements.txt +0 -3
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Iris
3
- emoji: 🐢
4
- colorFrom: purple
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 3.5
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
1
  ---
2
+ title: Iris Monitoring
3
+ emoji: 💻
4
+ colorFrom: blue
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 3.8.2
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
app.py CHANGED
@@ -1,49 +1,31 @@
1
  import gradio as gr
2
  from PIL import Image
3
- import requests
4
  import hopsworks
5
- import joblib
6
- import pandas as pd
7
 
8
  project = hopsworks.login()
9
  fs = project.get_feature_store()
10
 
 
11
 
12
- mr = project.get_model_registry()
13
- model = mr.get_model("iris_model", version=1)
14
- model_dir = model.download()
15
- model = joblib.load(model_dir + "/iris_model.pkl")
16
- print("Model downloaded")
17
 
18
- def iris(sepal_length, sepal_width, petal_length, petal_width):
19
- print("Calling function")
20
- # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
21
- df = pd.DataFrame([[sepal_length,sepal_width,petal_length,petal_width]],
22
- columns=['sepal_length','sepal_width','petal_length','petal_width'])
23
- print("Predicting")
24
- print(df)
25
- # 'res' is a list of predictions returned as the label.
26
- res = model.predict(df)
27
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
- # the first element.
29
- # print("Res: {0}").format(res)
30
- print(res)
31
- flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
32
- img = Image.open(requests.get(flower_url, stream=True).raw)
33
- return img
34
-
35
- demo = gr.Interface(
36
- fn=iris,
37
- title="Iris Flower Predictive Analytics",
38
- description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
39
- allow_flagging="never",
40
- inputs=[
41
- gr.inputs.Number(default=2.0, label="sepal length (cm)"),
42
- gr.inputs.Number(default=1.0, label="sepal width (cm)"),
43
- gr.inputs.Number(default=2.0, label="petal length (cm)"),
44
- gr.inputs.Number(default=1.0, label="petal width (cm)"),
45
- ],
46
- outputs=gr.Image(type="pil"))
47
-
48
- demo.launch(debug=True)
49
 
 
 
1
  import gradio as gr
2
  from PIL import Image
 
3
  import hopsworks
 
 
4
 
5
  project = hopsworks.login()
6
  fs = project.get_feature_store()
7
 
8
+ dataset_api = project.get_dataset_api()
9
 
10
+ dataset_api.download("Resources/images/latest_iris.png")
11
+ dataset_api.download("Resources/images/actual_iris.png")
12
+ dataset_api.download("Resources/images/df_recent.png")
13
+ dataset_api.download("Resources/images/confusion_matrix.png")
 
14
 
15
+ with gr.Blocks() as demo:
16
+ with gr.Row():
17
+ with gr.Column():
18
+ gr.Label("Today's Predicted Image")
19
+ input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
20
+ with gr.Column():
21
+ gr.Label("Today's Actual Image")
22
+ input_img = gr.Image("actual_iris.png", elem_id="actual-img")
23
+ with gr.Row():
24
+ with gr.Column():
25
+ gr.Label("Recent Prediction History")
26
+ input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
27
+ with gr.Column():
28
+ gr.Label("Confusion Maxtrix with Historical Prediction Performance")
29
+ input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ demo.launch()
requirements.txt CHANGED
@@ -1,4 +1 @@
1
- httpx==0.24.1
2
  hopsworks
3
- joblib
4
- scikit-learn==1.1.1
 
 
1
  hopsworks