import torch import torch.nn as nn import torchvision.models as models import torchvision.transforms as transforms import torch.nn.functional as F from PIL import Image import gradio as gr # Define your model architecture class EfficientNetMultiTask(nn.Module): def __init__(self, n_area_classes, n_room_classes): super(EfficientNetMultiTask, self).__init__() self.efficientnet = models.efficientnet_b0(pretrained=False) in_features = self.efficientnet.classifier[1].in_features self.area_classifier = nn.Sequential( nn.Linear(in_features, 512), nn.ReLU(), nn.Dropout(0.3), nn.Linear(512, n_area_classes) ) self.room_classifier = nn.Sequential( nn.Linear(in_features, 512), nn.ReLU(), nn.Dropout(0.3), nn.Linear(512, n_room_classes) ) self.efficientnet.classifier = nn.Identity() def forward(self, x): features = self.efficientnet(x) area_pred = self.area_classifier(features) room_pred = self.room_classifier(features) return area_pred, room_pred # Load model n_area_classes = 21 # Adjust according to your area bins n_room_classes = 16 # Adjust based on your dataset model = EfficientNetMultiTask(n_area_classes=n_area_classes, n_room_classes=n_room_classes) # Load weights (ensure floorplan_model_classification.pth is in the same directory as app.py) model_weights_path = 'floorplan_model_classification.pth' # Adjust with your model weights path model.load_state_dict(torch.load(model_weights_path, map_location=torch.device('cpu'))) model.eval() # Define transformations test_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Define area bins area_bins = [i for i in range(0, 525, 25)] # [0, 25, ..., 500] area_bins.append(float('inf')) # Add infinity for 500+ category def get_area_from_bin(area_bin_idx): if area_bin_idx < len(area_bins) - 2: return f"{area_bins[area_bin_idx]} - {area_bins[area_bin_idx + 1]} m²" else: return f"{area_bins[-2]}+ m²" # Prediction function def predict(image): image = Image.fromarray(image).convert('RGB') image = test_transform(image).unsqueeze(0) with torch.no_grad(): area_output, room_output = model(image) area_probabilities = F.softmax(area_output, dim=1) room_probabilities = F.softmax(room_output, dim=1) area_pred_idx = torch.argmax(area_probabilities, dim=1).item() room_pred_idx = torch.argmax(room_probabilities, dim=1).item() predicted_area = get_area_from_bin(area_pred_idx) predicted_rooms = room_pred_idx + 1 # Adjusting back to original room labels return predicted_area, str(predicted_rooms) # Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Upload Floor Plan Image"), # Correct input outputs=[ gr.Textbox(label="Predicted Total Area"), # Correct output gr.Textbox(label="Predicted Number of Rooms") ], title="Floor Plan Area and Room Predictor", description="Upload a floor plan image, and the model will predict the total area range and the number of rooms." ) # Launch Gradio interface if __name__ == "__main__": interface.launch()