Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torchvision.models as models | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
from PIL import Image | |
import gradio as gr | |
# Define your model architecture | |
class EfficientNetMultiTask(nn.Module): | |
def __init__(self, n_area_classes, n_room_classes): | |
super(EfficientNetMultiTask, self).__init__() | |
self.efficientnet = models.efficientnet_b0(pretrained=False) | |
in_features = self.efficientnet.classifier[1].in_features | |
self.area_classifier = nn.Sequential( | |
nn.Linear(in_features, 512), | |
nn.ReLU(), | |
nn.Dropout(0.3), | |
nn.Linear(512, n_area_classes) | |
) | |
self.room_classifier = nn.Sequential( | |
nn.Linear(in_features, 512), | |
nn.ReLU(), | |
nn.Dropout(0.3), | |
nn.Linear(512, n_room_classes) | |
) | |
self.efficientnet.classifier = nn.Identity() | |
def forward(self, x): | |
features = self.efficientnet(x) | |
area_pred = self.area_classifier(features) | |
room_pred = self.room_classifier(features) | |
return area_pred, room_pred | |
# Load model | |
n_area_classes = 21 # Adjust according to your area bins | |
n_room_classes = 16 # Adjust based on your dataset | |
model = EfficientNetMultiTask(n_area_classes=n_area_classes, n_room_classes=n_room_classes) | |
# Load weights (ensure floorplan_model_classification.pth is in the same directory as app.py) | |
model_weights_path = 'floorplan_model_classification.pth' # Adjust with your model weights path | |
model.load_state_dict(torch.load(model_weights_path, map_location=torch.device('cpu'))) | |
model.eval() | |
# Define transformations | |
test_transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# Define area bins | |
area_bins = [i for i in range(0, 525, 25)] # [0, 25, ..., 500] | |
area_bins.append(float('inf')) # Add infinity for 500+ category | |
def get_area_from_bin(area_bin_idx): | |
if area_bin_idx < len(area_bins) - 2: | |
return f"{area_bins[area_bin_idx]} - {area_bins[area_bin_idx + 1]} m²" | |
else: | |
return f"{area_bins[-2]}+ m²" | |
# Prediction function | |
def predict(image): | |
image = Image.fromarray(image).convert('RGB') | |
image = test_transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
area_output, room_output = model(image) | |
area_probabilities = F.softmax(area_output, dim=1) | |
room_probabilities = F.softmax(room_output, dim=1) | |
area_pred_idx = torch.argmax(area_probabilities, dim=1).item() | |
room_pred_idx = torch.argmax(room_probabilities, dim=1).item() | |
predicted_area = get_area_from_bin(area_pred_idx) | |
predicted_rooms = room_pred_idx + 1 # Adjusting back to original room labels | |
return predicted_area, str(predicted_rooms) | |
# Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="numpy", label="Upload Floor Plan Image"), # Correct input | |
outputs=[ | |
gr.Textbox(label="Predicted Total Area"), # Correct output | |
gr.Textbox(label="Predicted Number of Rooms") | |
], | |
title="Floor Plan Area and Room Predictor", | |
description="Upload a floor plan image, and the model will predict the total area range and the number of rooms." | |
) | |
# Launch Gradio interface | |
if __name__ == "__main__": | |
interface.launch() | |