|
import gradio as gr |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline |
|
import csv |
|
|
|
MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News" |
|
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News") |
|
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News") |
|
|
|
categories = { |
|
"arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang", |
|
"crime_law_and_justice": "Bosenyi, molao le bosiamisi", |
|
"disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso", |
|
"economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete", |
|
"education": "Thuto", |
|
"environment": "Tikologo", |
|
"health": "Boitekanelo", |
|
"politics": "Dipolotiki", |
|
"religion_and_belief": "Bodumedi le tumelo", |
|
"society": "Setšhaba" |
|
} |
|
|
|
def prediction(news): |
|
classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, return_all_scores=True) |
|
preds = classifier(news) |
|
preds_dict = {categories.get(pred['label'], pred['label']): round(pred['score'], 4) for pred in preds[0]} |
|
return preds_dict |
|
|
|
def file_prediction(file): |
|
news_list = [] |
|
|
|
if file.name.endswith('.csv'): |
|
file.seek(0) |
|
reader = csv.reader(file.read().decode('utf-8').splitlines()) |
|
news_list = [row[0] for row in reader if row] |
|
else: |
|
file.seek(0) |
|
file_content = file.read().decode('utf-8') |
|
news_list = file_content.splitlines() |
|
|
|
results = [] |
|
for news in news_list: |
|
if news.strip(): |
|
pred = prediction(news) |
|
results.append([news, pred]) |
|
|
|
return results |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
pass |
|
with gr.Column(scale=4, min_width=1000): |
|
gr.Image("logo_transparent_small.png", elem_id="logo", show_label=False, width=500) |
|
gr.Markdown(""" |
|
<h1 style='text-align: center;'>Setswana News Classification</h1> |
|
<p style='text-align: center;'>This space provides a classification service for news in Setswana.</p> |
|
""") |
|
with gr.Column(scale=1): |
|
pass |
|
|
|
with gr.Tabs(): |
|
with gr.Tab("Text Input"): |
|
gr.Markdown(f""" |
|
Enter Setswana news article to see the category of the news. <br> |
|
For this classification, the <a href='{MODEL_URL}' target='_blank'>PuoBERTa-News</a> model was used. |
|
""") |
|
inp_text = gr.Textbox(lines=10, label="Paste some Setswana news here") |
|
output_label = gr.Label(num_top_classes=5, label="News categories probabilities") |
|
translate_button = gr.Button("Classify") |
|
translate_button.click(prediction, inputs=inp_text, outputs=output_label) |
|
|
|
with gr.Tab("File Upload"): |
|
gr.Markdown(""" |
|
Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text. |
|
""") |
|
file_input = gr.File(label="Upload text or CSV file") |
|
file_output = gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file") |
|
file_button = gr.Button("Classify File") |
|
file_button.click(file_prediction, inputs=file_input, outputs=file_output) |
|
|
|
gr.Markdown(""" |
|
<div style='text-align: center;'> |
|
<a href='https://github.com/dsfsi/PuoBERTa-News' target='_blank'>GitHub</a> | |
|
<a href='https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform' target='_blank'>Feedback Form</a> |
|
</div> |
|
""") |
|
|
|
with gr.Accordion("More Information", open=False): |
|
|
|
gr.Markdown(""" |
|
<h4 style="text-align: center;">Authors</h4> |
|
<div style='text-align: center;'> |
|
Vukosi Marivate, Moseli Mots'Oehli, Valencia Wagner, Richard Lastrucci, Isheanesu Dzingirai |
|
</div> |
|
""") |
|
|
|
gr.Markdown(""" |
|
<h4 style="text-align: center;">Citation</h4> |
|
<pre style="text-align: left; white-space: pre-wrap;"> |
|
@inproceedings{marivate2023puoberta, |
|
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana}, |
|
author = {Vukosi Marivate and Moseli Mots'Oehli and Valencia Wagner and Richard Lastrucci and Isheanesu Dzingirai}, |
|
year = {2023}, |
|
booktitle= {Artificial Intelligence Research. SACAIR 2023. Communications in Computer and Information Science}, |
|
url= {https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17}, |
|
keywords = {NLP}, |
|
preprint_url = {https://arxiv.org/abs/2310.09141}, |
|
dataset_url = {https://github.com/dsfsi/PuoBERTa}, |
|
software_url = {https://huggingface.co/dsfsi/PuoBERTa} |
|
} |
|
</pre> |
|
""") |
|
|
|
gr.Markdown(""" |
|
<h4 style="text-align: center;">DOI</h4> |
|
<div style='text-align: center;'> |
|
DOI: <a href="https://doi.org/10.1007/978-3-031-49002-6_17" target="_blank">10.1007/978-3-031-49002-6_17</a> |
|
</div> |
|
""") |
|
|
|
demo.launch() |
|
|