Spaces:
Sleeping
Sleeping
| import cv2 | |
| import numpy as np | |
| import pandas as pd | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| import torch | |
| import gradio as gr | |
| import os | |
| import time | |
| from scipy.optimize import curve_fit | |
| import sys | |
| # Add yolov5 directory to sys.path | |
| sys.path.append(os.path.join(os.path.dirname(__file__), "yolov5")) | |
| # Import YOLOv5 modules | |
| from models.experimental import attempt_load | |
| from utils.general import non_max_suppression, xywh2xyxy | |
| # Cricket pitch dimensions (in meters) | |
| PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps) | |
| PITCH_WIDTH = 3.05 # Width of pitch | |
| STUMP_HEIGHT = 0.71 # Stump height | |
| STUMP_WIDTH = 0.2286 # Stump width (including bails) | |
| # Model input size (adjust if best.pt was trained with a different size) | |
| MODEL_INPUT_SIZE = (640, 640) # (height, width) | |
| FRAME_SKIP = 2 # Process every 2nd frame | |
| MIN_DETECTIONS = 10 # Stop after 10 detections | |
| BATCH_SIZE = 4 # Process 4 frames at a time | |
| # Load model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = attempt_load("best.pt") # Load without map_location | |
| model.to(device).eval() # Move model to device and set to evaluation mode | |
| # Function to process video and detect ball | |
| def process_video(video_path): | |
| cap = cv2.VideoCapture(video_path) | |
| frame_rate = cap.get(cv2.CAP_PROP_FPS) | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| positions = [] | |
| frame_numbers = [] | |
| bounce_frame = None | |
| bounce_point = None | |
| batch_frames = [] | |
| batch_frame_nums = [] | |
| frame_count = 0 | |
| start_time = time.time() | |
| while cap.isOpened(): | |
| frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Skip frames | |
| if frame_count % FRAME_SKIP != 0: | |
| frame_count += 1 | |
| continue | |
| # Resize frame to model input size | |
| frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA) | |
| batch_frames.append(frame) | |
| batch_frame_nums.append(frame_num) | |
| frame_count += 1 | |
| # Process batch when full or at end | |
| if len(batch_frames) == BATCH_SIZE or not ret: | |
| # Preprocess batch | |
| batch = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in batch_frames] | |
| batch = np.stack(batch) # [batch_size, H, W, 3] | |
| batch = torch.from_numpy(batch).to(device).float() / 255.0 | |
| batch = batch.permute(0, 3, 1, 2) # [batch_size, 3, H, W] | |
| # Run inference | |
| frame_start_time = time.time() | |
| with torch.no_grad(): | |
| pred = model(batch)[0] | |
| pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45) | |
| print(f"Batch inference time: {time.time() - frame_start_time:.2f}s for {len(batch_frames)} frames") | |
| # Process detections | |
| for i, det in enumerate(pred): | |
| if det is not None and len(det): | |
| det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2] | |
| for *xyxy, conf, cls in det: | |
| x_center = (xyxy[0] + xyxy[2]) / 2 | |
| y_center = (xyxy[1] + xyxy[3]) / 2 | |
| # Scale coordinates back to original frame size | |
| x_center = x_center * frame_width / MODEL_INPUT_SIZE[1] | |
| y_center = y_center * frame_height / MODEL_INPUT_SIZE[0] | |
| positions.append((x_center.item(), y_center.item())) | |
| frame_numbers.append(batch_frame_nums[i]) | |
| # Detect bounce (lowest y_center point) | |
| if bounce_frame is None or y_center > positions[bounce_frame][1]: | |
| bounce_frame = len(frame_numbers) - 1 | |
| bounce_point = (x_center.item(), y_center.item()) | |
| batch_frames = [] | |
| batch_frame_nums = [] | |
| # Early termination | |
| if len(positions) >= MIN_DETECTIONS: | |
| break | |
| cap.release() | |
| print(f"Total video processing time: {time.time() - start_time:.2f}s") | |
| return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height | |
| # Polynomial function for trajectory fitting | |
| def poly_func(x, a, b, c): | |
| return a * x**2 + b * x + c | |
| # Predict trajectory and LBW decision | |
| def predict_trajectory(positions, frame_numbers, frame_width, frame_height): | |
| if len(positions) < 3: | |
| return None, "Insufficient detections for trajectory prediction" | |
| x_coords = [p[0] for p in positions] | |
| y_coords = [p[1] for p in positions] | |
| frames = np.array(frame_numbers) | |
| # Fit polynomial to x and y coordinates | |
| try: | |
| popt_x, _ = curve_fit(poly_func, frames, x_coords) | |
| popt_y, _ = curve_fit(poly_func, frames, y_coords) | |
| except: | |
| return None, "Failed to fit trajectory" | |
| # Extrapolate to stumps | |
| frame_max = max(frames) + 10 | |
| future_frames = np.linspace(min(frames), frame_max, 100) | |
| x_pred = poly_func(future_frames, *popt_x) | |
| y_pred = poly_func(future_frames, *popt_y) | |
| # Check if trajectory hits stumps | |
| stump_x = frame_width / 2 | |
| stump_y = frame_height | |
| stump_hit = False | |
| for x, y in zip(x_pred, y_pred): | |
| if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH: | |
| stump_hit = True | |
| break | |
| lbw_decision = "OUT" if stump_hit else "NOT OUT" | |
| return list(zip(future_frames, x_pred, y_pred)), lbw_decision | |
| # Map pitch location | |
| def map_pitch(bounce_point, frame_width, frame_height): | |
| if bounce_point is None: | |
| return None, "No bounce detected" | |
| x, y = bounce_point | |
| pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2 | |
| pitch_y = (1 - y / frame_height) * PITCH_LENGTH | |
| return pitch_x, pitch_y | |
| # Estimate ball speed | |
| def estimate_speed(positions, frame_numbers, frame_rate, frame_width): | |
| if len(positions) < 2: | |
| return None, "Insufficient detections for speed estimation" | |
| distances = [] | |
| for i in range(1, len(positions)): | |
| x1, y1 = positions[i-1] | |
| x2, y2 = positions[i] | |
| pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) | |
| distances.append(pixel_dist) | |
| pixel_to_meter = PITCH_LENGTH / frame_width | |
| distances_m = [d * pixel_to_meter for d in distances] | |
| time_interval = 1 / frame_rate | |
| speeds = [d / time_interval for d in distances_m] | |
| avg_speed_kmh = np.mean(speeds) * 3.6 | |
| return avg_speed_kmh, "Speed calculated successfully" | |
| # Create pitch map visualization | |
| def create_pitch_map(pitch_x, pitch_y): | |
| fig = go.Figure() | |
| fig.add_shape( | |
| type="rect", x0=-PITCH_WIDTH/2, y0=0, x1=PITCH_WIDTH/2, y1=PITCH_LENGTH, | |
| line=dict(color="Green"), fillcolor="Green", opacity=0.3 | |
| ) | |
| fig.add_shape( | |
| type="rect", x0=-STUMP_WIDTH/2, y0=PITCH_LENGTH-0.1, x1=STUMP_WIDTH/2, y1=PITCH_LENGTH, | |
| line=dict(color="Brown"), fillcolor="Brown" | |
| ) | |
| if pitch_x is not None and pitch_y is not None: | |
| fig.add_trace(go.Scatter(x=[pitch_x], y=[pitch_y], mode="markers", marker=dict(size=10, color="Red"), name="Bounce Point")) | |
| fig.update_layout( | |
| title="Pitch Map", xaxis_title="Width (m)", yaxis_title="Length (m)", | |
| xaxis_range=[-PITCH_WIDTH/2, PITCH_WIDTH/2], yaxis_range=[0, PITCH_LENGTH] | |
| ) | |
| return fig | |
| # Main Gradio function | |
| def drs_analysis(video): | |
| # Video is a file path (string) in Hugging Face Spaces | |
| video_path = video if isinstance(video, str) else "temp_video.mp4" | |
| if not isinstance(video, str): | |
| with open(video_path, "wb") as f: | |
| f.write(video.read()) | |
| positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path) | |
| if not positions: | |
| return None, None, "No ball detected in video", None | |
| trajectory, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height) | |
| if trajectory is None: | |
| return None, None, lbw_decision, None | |
| pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height) | |
| speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width) | |
| trajectory_df = pd.DataFrame(trajectory, columns=["Frame", "X", "Y"]) | |
| fig_traj = px.line(trajectory_df, x="X", y="Y", title="Ball Trajectory (Pixel Coordinates)") | |
| fig_traj.update_yaxes(autorange="reversed") | |
| fig_pitch = create_pitch_map(pitch_x, pitch_y) | |
| if not isinstance(video, str): | |
| os.remove(video_path) | |
| return fig_traj, fig_pitch, f"LBW Decision: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h", video_path | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Cricket DRS Analysis") | |
| video_input = gr.Video(label="Upload Video Clip") | |
| btn = gr.Button("Analyze") | |
| trajectory_output = gr.Plot(label="Ball Trajectory") | |
| pitch_output = gr.Plot(label="Pitch Map") | |
| text_output = gr.Textbox(label="Analysis Results") | |
| video_output = gr.Video(label="Processed Video") | |
| btn.click(drs_analysis, inputs=video_input, outputs=[trajectory_output, pitch_output, text_output, video_output]) | |
| if __name__ == "__main__": | |
| demo.launch() |