Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| """ | |
| PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5. | |
| Usage: | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model | |
| model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model | |
| model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo | |
| """ | |
| import torch | |
| def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| """ | |
| Creates or loads a YOLOv5 model, with options for pretrained weights and model customization. | |
| Args: | |
| name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt'). | |
| pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True. | |
| channels (int, optional): Number of input channels the model expects. Defaults to 3. | |
| classes (int, optional): Number of classes the model is expected to detect. Defaults to 80. | |
| autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True. | |
| verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True. | |
| device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects | |
| the best available device. Defaults to None. | |
| Returns: | |
| (DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified. | |
| Examples: | |
| ```python | |
| import torch | |
| from ultralytics import _create | |
| # Load an official YOLOv5s model with pretrained weights | |
| model = _create('yolov5s') | |
| # Load a custom model from a local checkpoint | |
| model = _create('path/to/custom_model.pt', pretrained=False) | |
| # Load a model with specific input channels and classes | |
| model = _create('yolov5s', channels=1, classes=10) | |
| ``` | |
| Notes: | |
| For more information on model loading and customization, visit the | |
| [YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/). | |
| """ | |
| from pathlib import Path | |
| from models.common import AutoShape, DetectMultiBackend | |
| from models.experimental import attempt_load | |
| from models.yolo import ClassificationModel, DetectionModel, SegmentationModel | |
| from utils.downloads import attempt_download | |
| from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging | |
| from utils.torch_utils import select_device | |
| if not verbose: | |
| LOGGER.setLevel(logging.WARNING) | |
| check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop")) | |
| name = Path(name) | |
| path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path | |
| try: | |
| device = select_device(device) | |
| if pretrained and channels == 3 and classes == 80: | |
| try: | |
| model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model | |
| if autoshape: | |
| if model.pt and isinstance(model.model, ClassificationModel): | |
| LOGGER.warning( | |
| "WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. " | |
| "You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)." | |
| ) | |
| elif model.pt and isinstance(model.model, SegmentationModel): | |
| LOGGER.warning( | |
| "WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. " | |
| "You will not be able to run inference with this model." | |
| ) | |
| else: | |
| model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS | |
| except Exception: | |
| model = attempt_load(path, device=device, fuse=False) # arbitrary model | |
| else: | |
| cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path | |
| model = DetectionModel(cfg, channels, classes) # create model | |
| if pretrained: | |
| ckpt = torch.load(attempt_download(path), map_location=device) # load | |
| csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32 | |
| csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect | |
| model.load_state_dict(csd, strict=False) # load | |
| if len(ckpt["model"].names) == classes: | |
| model.names = ckpt["model"].names # set class names attribute | |
| if not verbose: | |
| LOGGER.setLevel(logging.INFO) # reset to default | |
| return model.to(device) | |
| except Exception as e: | |
| help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading" | |
| s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help." | |
| raise Exception(s) from e | |
| def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None): | |
| """ | |
| Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification. | |
| Args: | |
| path (str): Path to the custom model file (e.g., 'path/to/model.pt'). | |
| autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input | |
| types (default is True). | |
| _verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently | |
| (default is True). | |
| device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc. | |
| (default is None, which automatically selects the best available device). | |
| Returns: | |
| torch.nn.Module: A YOLOv5 model loaded with the specified parameters. | |
| Notes: | |
| For more details on loading models from PyTorch Hub: | |
| https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading | |
| Examples: | |
| ```python | |
| # Load model from a given path with autoshape enabled on the best available device | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') | |
| # Load model from a local path without autoshape on the CPU device | |
| model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu') | |
| ``` | |
| """ | |
| return _create(path, autoshape=autoshape, verbose=_verbose, device=device) | |
| def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping, | |
| verbosity, and device. | |
| Args: | |
| pretrained (bool): If True, loads pretrained weights into the model. Defaults to True. | |
| channels (int): Number of input channels for the model. Defaults to 3. | |
| classes (int): Number of classes for object detection. Defaults to 80. | |
| autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/ | |
| cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True. | |
| _verbose (bool): If True, prints detailed information to the screen. Defaults to True. | |
| device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device | |
| available (i.e., GPU if available, otherwise CPU). Defaults to None. | |
| Returns: | |
| DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with | |
| pretrained weights and autoshaping applied. | |
| Notes: | |
| For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/ | |
| ultralytics_yolov5). | |
| Examples: | |
| ```python | |
| import torch | |
| from ultralytics import yolov5n | |
| # Load the YOLOv5-nano model with defaults | |
| model = yolov5n() | |
| # Load the YOLOv5-nano model with a specific device | |
| model = yolov5n(device='cuda') | |
| ``` | |
| """ | |
| return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping, | |
| verbosity, and device configuration. | |
| Args: | |
| pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True. | |
| channels (int, optional): Number of input channels. Defaults to 3. | |
| classes (int, optional): Number of model classes. Defaults to 80. | |
| autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats. | |
| Defaults to True. | |
| _verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True. | |
| device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or | |
| torch.device instances. If None, automatically selects the best available device. Defaults to None. | |
| Returns: | |
| torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters. | |
| Example: | |
| ```python | |
| import torch | |
| # Load the official YOLOv5-small model with pretrained weights | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
| # Load the YOLOv5-small model from a specific branch | |
| model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') | |
| # Load a custom YOLOv5-small model from a local checkpoint | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') | |
| # Load a local YOLOv5-small model specifying source as local repository | |
| model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') | |
| ``` | |
| Notes: | |
| For more details on model loading and customization, visit | |
| the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5/). | |
| """ | |
| return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping, | |
| verbosity, and device. | |
| Args: | |
| pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True. | |
| channels (int, optional): Number of input channels. Default is 3. | |
| classes (int, optional): Number of model classes. Default is 80. | |
| autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats. | |
| Default is True. | |
| _verbose (bool, optional): Whether to print detailed information to the screen. Default is True. | |
| device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda'). | |
| Default is None. | |
| Returns: | |
| torch.nn.Module: The instantiated YOLOv5-medium model. | |
| Usage Example: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository | |
| model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model | |
| model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository | |
| ``` | |
| For more information, visit https://pytorch.org/hub/ultralytics_yolov5. | |
| """ | |
| return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device | |
| selection. | |
| Args: | |
| pretrained (bool): Load pretrained weights into the model. Default is True. | |
| channels (int): Number of input channels. Default is 3. | |
| classes (int): Number of model classes. Default is 80. | |
| autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True. | |
| _verbose (bool): Print all information to screen. Default is True. | |
| device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance. | |
| Default is None. | |
| Returns: | |
| YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly | |
| pretrained weights. | |
| Examples: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5l') | |
| ``` | |
| Notes: | |
| For additional details, refer to the PyTorch Hub models documentation: | |
| https://pytorch.org/hub/ultralytics_yolov5 | |
| """ | |
| return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count, | |
| autoshaping, verbosity, and device specification. | |
| Args: | |
| pretrained (bool): If True, loads pretrained weights into the model. Defaults to True. | |
| channels (int): Number of input channels for the model. Defaults to 3. | |
| classes (int): Number of model classes for object detection. Defaults to 80. | |
| autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to | |
| True. | |
| _verbose (bool): If True, prints detailed information during model loading. Defaults to True. | |
| device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda'). | |
| Defaults to None. | |
| Returns: | |
| torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and | |
| autoshaping applied. | |
| Example: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5x') | |
| ``` | |
| For additional details, refer to the official YOLOv5 PyTorch Hub models documentation: | |
| https://pytorch.org/hub/ultralytics_yolov5 | |
| """ | |
| return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device. | |
| Args: | |
| pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True. | |
| channels (int, optional): Number of input channels. Default is 3. | |
| classes (int, optional): Number of model classes. Default is 80. | |
| autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True. | |
| _verbose (bool, optional): If True, prints all information to screen. Default is True. | |
| device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None. | |
| Default is None. | |
| Returns: | |
| torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations. | |
| Example: | |
| ```python | |
| import torch | |
| model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda') | |
| ``` | |
| Notes: | |
| For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5 | |
| """ | |
| return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping, | |
| verbosity, and device selection. | |
| Args: | |
| pretrained (bool): If True, loads pretrained weights. Default is True. | |
| channels (int): Number of input channels. Default is 3. | |
| classes (int): Number of object detection classes. Default is 80. | |
| autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats. | |
| Default is True. | |
| _verbose (bool): If True, prints detailed information during model loading. Default is True. | |
| device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device). | |
| Default is None, which selects an available device automatically. | |
| Returns: | |
| torch.nn.Module: The YOLOv5-small-P6 model instance. | |
| Usage: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5s6') | |
| model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model | |
| model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model | |
| ``` | |
| Notes: | |
| - For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5 | |
| Raises: | |
| Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5 | |
| tutorials for help. | |
| """ | |
| return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and | |
| device. | |
| Args: | |
| pretrained (bool): If True, loads pretrained weights. Default is True. | |
| channels (int): Number of input channels. Default is 3. | |
| classes (int): Number of model classes. Default is 80. | |
| autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS. | |
| Default is True. | |
| _verbose (bool): If True, prints detailed information to the screen. Default is True. | |
| device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the | |
| best available device. | |
| Returns: | |
| torch.nn.Module: The YOLOv5-medium-P6 model. | |
| Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details. | |
| Example: | |
| ```python | |
| import torch | |
| # Load YOLOv5-medium-P6 model | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5m6') | |
| ``` | |
| Notes: | |
| - The model can be loaded with pre-trained weights for better performance on specific tasks. | |
| - The autoshape feature simplifies input handling by allowing various popular data formats. | |
| """ | |
| return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping, | |
| verbosity, and device selection. | |
| Args: | |
| pretrained (bool, optional): If True, load pretrained weights into the model. Default is True. | |
| channels (int, optional): Number of input channels. Default is 3. | |
| classes (int, optional): Number of model classes. Default is 80. | |
| autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True. | |
| _verbose (bool, optional): If True, print all information to the screen. Default is True. | |
| device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device. | |
| If None, automatically selects the best available device. Default is None. | |
| Returns: | |
| torch.nn.Module: The instantiated YOLOv5-large-P6 model. | |
| Example: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model | |
| model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch | |
| model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model | |
| model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository | |
| ``` | |
| Note: | |
| Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5/) for additional usage instructions. | |
| """ | |
| return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device) | |
| def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
| """ | |
| Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping, | |
| verbosity, and device selection. | |
| Args: | |
| pretrained (bool): If True, loads pretrained weights into the model. Default is True. | |
| channels (int): Number of input channels. Default is 3. | |
| classes (int): Number of model classes. Default is 80. | |
| autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True. | |
| _verbose (bool): If True, prints all information to the screen. Default is True. | |
| device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or | |
| None for default device selection. Default is None. | |
| Returns: | |
| torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model. | |
| Example: | |
| ```python | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model | |
| ``` | |
| Note: | |
| For more information on YOLOv5 models, visit the official documentation: | |
| https://docs.ultralytics.com/yolov5 | |
| """ | |
| return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device) | |
| if __name__ == "__main__": | |
| import argparse | |
| from pathlib import Path | |
| import numpy as np | |
| from PIL import Image | |
| from utils.general import cv2, print_args | |
| # Argparser | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model", type=str, default="yolov5s", help="model name") | |
| opt = parser.parse_args() | |
| print_args(vars(opt)) | |
| # Model | |
| model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) | |
| # model = custom(path='path/to/model.pt') # custom | |
| # Images | |
| imgs = [ | |
| "data/images/zidane.jpg", # filename | |
| Path("data/images/zidane.jpg"), # Path | |
| "https://ultralytics.com/images/zidane.jpg", # URI | |
| cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV | |
| Image.open("data/images/bus.jpg"), # PIL | |
| np.zeros((320, 640, 3)), | |
| ] # numpy | |
| # Inference | |
| results = model(imgs, size=320) # batched inference | |
| # Results | |
| results.print() | |
| results.save() | |