asnassar's picture
Update app.py
12df581 verified
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import re
import time
import torch
import spaces
import re
import ast
import html
import random
from PIL import Image, ImageOps
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0)) # Top-left corner
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded_image
def normalize_values(text, target_max=500):
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
pattern = r"\[([\d\.\s,]+)\]"
normalized_text = re.sub(pattern, process_match, text)
return normalized_text
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2"
).to("cuda")
@spaces.GPU
def model_inference(
input_dict, history
):
text = input_dict["text"]
print(input_dict["files"])
if len(input_dict["files"]) > 1:
if "OTSL" in text or "code" in text:
images = [add_random_padding(load_image(image)) for image in input_dict["files"]]
else:
images = [load_image(image) for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
if "OTSL" in text or "code" in text:
images = [add_random_padding(load_image(input_dict["files"][0]))]
else:
images = [load_image(input_dict["files"][0])]
else:
images = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
text = normalize_values(text, target_max=500)
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt").to('cuda')
generation_args = {
"input_ids": inputs.input_ids,
"pixel_values": inputs.pixel_values,
"attention_mask": inputs.attention_mask,
"num_return_sequences": 1,
"max_new_tokens": 8192,
}
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += html.escape(new_text)
yield buffer
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if cleaned_output:
doctag_output = cleaned_output
yield cleaned_output
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
doc = DoclingDocument(name="Document")
if "<chart>" in doctag_output:
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
doc.load_from_doctags(doctags_doc)
yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
examples=[[{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}],
[{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}],
[{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}],
[{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}],
[{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}],
[{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}],
[{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}],
[{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}],
[{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}],
]
demo = gr.ChatInterface(fn=model_inference, title="SmolDocling-256M: Ultra-compact VLM for Document Conversion πŸ’«",
description="Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
cache_examples=False
)
demo.launch(debug=True)