Spaces:
Sleeping
Sleeping
File size: 16,524 Bytes
01bc500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
#!/usr/bin/env python3
"""
PDF Document Ingestion Script
This script processes complex PDF documents (like medical textbooks), extracts text and images,
chunks them intelligently, generates vector embeddings using state-of-the-art local models,
and stores them in a local ChromaDB vector database.
Author: Expert Python Developer
Python Version: 3.9+
"""
import os
import uuid
import hashlib
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import logging
# Third-party imports
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings
from unstructured.partition.pdf import partition_pdf
from PIL import Image
import io
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# =============================================================================
# CONFIGURATION SECTION
# =============================================================================
# Input/Output Paths
SOURCE_DIRECTORY = "/home/tony/pdf_docs" # Directory containing PDF files to process
DB_PATH = "/home/tony/chromadb" # Path for persistent ChromaDB database
IMAGE_OUTPUT_DIRECTORY = "/home/tony/extracted_images" # Path for storing extracted images
# Model Configuration
TEXT_EMBEDDING_MODEL = "BAAI/bge-m3" # State-of-the-art text embedding model
IMAGE_EMBEDDING_MODEL = "clip-ViT-B-32" # CLIP model for image embeddings
# Database Configuration
COLLECTION_NAME = "medical_library" # ChromaDB collection name
# Processing Configuration
BATCH_SIZE = 100 # Number of chunks to process in each batch
MAX_CHUNK_SIZE = 1000 # Maximum characters per text chunk
# =============================================================================
# INITIALIZATION FUNCTIONS
# =============================================================================
def initialize_chromadb() -> Tuple[chromadb.Client, chromadb.Collection]:
"""
Initialize and return the ChromaDB client and collection.
Returns:
Tuple[chromadb.Client, chromadb.Collection]: The client and collection objects
"""
try:
# Ensure database directory exists
os.makedirs(DB_PATH, exist_ok=True)
# Initialize ChromaDB client with persistent storage
client = chromadb.PersistentClient(
path=DB_PATH,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True
)
)
# Get or create collection
try:
collection = client.get_collection(name=COLLECTION_NAME)
logger.info(f"Using existing collection: {COLLECTION_NAME}")
except chromadb.errors.NotFoundError:
collection = client.create_collection(
name=COLLECTION_NAME,
metadata={"description": "Medical textbook PDF content with embeddings"}
)
logger.info(f"Created new collection: {COLLECTION_NAME}")
return client, collection
except Exception as e:
logger.error(f"Failed to initialize ChromaDB: {e}")
raise
def initialize_models() -> Tuple[SentenceTransformer, SentenceTransformer]:
"""
Load and return the text and image embedding models.
Returns:
Tuple[SentenceTransformer, SentenceTransformer]: Text and image models
"""
try:
logger.info("Loading text embedding model...")
text_model = SentenceTransformer(TEXT_EMBEDDING_MODEL)
logger.info("Loading image embedding model...")
image_model = SentenceTransformer(IMAGE_EMBEDDING_MODEL)
logger.info("Models loaded successfully!")
return text_model, image_model
except Exception as e:
logger.error(f"Failed to load models: {e}")
raise
def ensure_directories() -> None:
"""
Ensure all required directories exist.
"""
try:
os.makedirs(SOURCE_DIRECTORY, exist_ok=True)
os.makedirs(IMAGE_OUTPUT_DIRECTORY, exist_ok=True)
os.makedirs(DB_PATH, exist_ok=True)
logger.info("All directories verified/created successfully")
except Exception as e:
logger.error(f"Failed to create directories: {e}")
raise
# =============================================================================
# DEDUPLICATION FUNCTIONS
# =============================================================================
def calculate_file_hash(file_path: str) -> str:
"""
Calculate SHA-256 hash of a file for deduplication.
Args:
file_path (str): Path to the file
Returns:
str: SHA-256 hash of the file
"""
hash_sha256 = hashlib.sha256()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def is_pdf_already_processed(pdf_path: str, collection: chromadb.Collection) -> bool:
"""
Check if a PDF has already been processed by checking its hash in the database.
Args:
pdf_path (str): Path to the PDF file
collection (chromadb.Collection): ChromaDB collection
Returns:
bool: True if already processed, False otherwise
"""
try:
file_hash = calculate_file_hash(pdf_path)
# Query the collection for any document with this file hash
result = collection.get(where={"file_hash": file_hash}, limit=1)
if len(result['ids']) > 0:
pdf_filename = Path(pdf_path).name
logger.info(f"PDF {pdf_filename} already processed (hash: {file_hash[:12]}...). Skipping.")
return True
return False
except Exception as e:
logger.warning(f"Error checking if PDF is already processed: {e}")
return False
# =============================================================================
# DOCUMENT PROCESSING FUNCTIONS
# =============================================================================
def process_pdf(
pdf_path: str,
text_model: SentenceTransformer,
image_model: SentenceTransformer,
collection: chromadb.Collection
) -> None:
"""
Process a single PDF file and store chunks in ChromaDB.
Args:
pdf_path (str): Path to the PDF file
text_model (SentenceTransformer): Text embedding model
image_model (SentenceTransformer): Image embedding model
collection (chromadb.Collection): ChromaDB collection
"""
try:
pdf_filename = Path(pdf_path).name
logger.info(f"Processing PDF: {pdf_filename}")
# Calculate file hash for deduplication
file_hash = calculate_file_hash(pdf_path)
# Parse PDF with unstructured
elements = partition_pdf(
filename=pdf_path,
strategy="hi_res",
extract_images_in_pdf=True,
infer_table_structure=True
)
if not elements:
logger.warning(f"No elements extracted from {pdf_filename}")
return
# Generate chunks from elements
chunks = create_chunks_from_elements(elements, pdf_filename, file_hash)
if not chunks:
logger.warning(f"No chunks created from {pdf_filename}")
return
# Process chunks in batches
process_chunks_in_batches(chunks, text_model, image_model, collection)
logger.info(f"Successfully processed {pdf_filename}: {len(chunks)} chunks")
except Exception as e:
logger.error(f"Error processing PDF {pdf_path}: {e}")
raise
def create_chunks_from_elements(elements: List, pdf_filename: str, file_hash: str) -> List[Dict[str, Any]]:
"""
Create chunks from unstructured elements (let unstructured handle the intelligent parsing).
Args:
elements (List): List of unstructured elements
pdf_filename (str): Name of the source PDF file
file_hash (str): SHA-256 hash of the PDF file for deduplication
Returns:
List[Dict[str, Any]]: List of chunk dictionaries
"""
chunks = []
for i, element in enumerate(elements):
try:
element_type = element.category
page_number = getattr(element.metadata, 'page_number', 1)
# Handle image elements
if element_type == "Image" and hasattr(element, 'image_bytes'):
# Save image and create image chunk
image_path = save_image(element.image_bytes, pdf_filename, i)
if image_path:
chunks.append({
'id': f"{pdf_filename}_img_{i}",
'content': image_path,
'type': 'image',
'metadata': {
'source_file': pdf_filename,
'page_number': page_number,
'element_type': element_type,
'image_path': image_path,
'file_hash': file_hash
}
})
# Handle all text elements as individual chunks (unstructured already did the intelligent parsing)
else:
text_content = str(element).strip()
if text_content and len(text_content) > 20: # Skip very short fragments
chunks.append({
'id': f"{pdf_filename}_text_{i}",
'content': text_content,
'type': 'text',
'metadata': {
'source_file': pdf_filename,
'page_number': page_number,
'element_type': element_type,
'file_hash': file_hash
}
})
except Exception as e:
logger.warning(f"Error processing element {i}: {e}")
continue
return chunks
def save_image(image_bytes: bytes, pdf_filename: str, chunk_index: int) -> Optional[str]:
"""
Save image bytes to file and return the path.
Args:
image_bytes (bytes): Raw image data
pdf_filename (str): Source PDF filename
chunk_index (int): Index of the chunk
Returns:
Optional[str]: Path to saved image or None if failed
"""
try:
# Create unique filename
image_filename = f"{Path(pdf_filename).stem}_{chunk_index}_{uuid.uuid4().hex[:8]}.png"
image_path = os.path.join(IMAGE_OUTPUT_DIRECTORY, image_filename)
# Convert and save image
image = Image.open(io.BytesIO(image_bytes))
image.save(image_path, format='PNG')
return image_path
except Exception as e:
logger.warning(f"Failed to save image: {e}")
return None
def process_chunks_in_batches(
chunks: List[Dict[str, Any]],
text_model: SentenceTransformer,
image_model: SentenceTransformer,
collection: chromadb.Collection
) -> None:
"""
Process chunks in batches and store in ChromaDB.
Args:
chunks (List[Dict[str, Any]]): List of chunks to process
text_model (SentenceTransformer): Text embedding model
image_model (SentenceTransformer): Image embedding model
collection (chromadb.Collection): ChromaDB collection
"""
for i in range(0, len(chunks), BATCH_SIZE):
batch = chunks[i:i + BATCH_SIZE]
try:
process_batch(batch, text_model, image_model, collection)
except Exception as e:
logger.error(f"Error processing batch {i//BATCH_SIZE + 1}: {e}")
# Continue with next batch instead of failing completely
continue
def process_batch(
batch: List[Dict[str, Any]],
text_model: SentenceTransformer,
image_model: SentenceTransformer,
collection: chromadb.Collection
) -> None:
"""
Process a single batch of chunks.
Args:
batch (List[Dict[str, Any]]): Batch of chunks to process
text_model (SentenceTransformer): Text embedding model
image_model (SentenceTransformer): Image embedding model
collection (chromadb.Collection): ChromaDB collection
"""
ids = []
embeddings = []
metadatas = []
documents = []
for chunk in batch:
try:
chunk_id = chunk['id']
content = chunk['content']
chunk_type = chunk['type']
metadata = chunk['metadata']
# Generate embedding based on type
if chunk_type == 'text':
embedding = text_model.encode(content).tolist()
document = content
elif chunk_type == 'image':
# For images, encode the image file
if os.path.exists(content):
embedding = image_model.encode(Image.open(content)).tolist()
document = f"Image from {metadata['source_file']} page {metadata['page_number']}"
else:
logger.warning(f"Image file not found: {content}")
continue
else:
logger.warning(f"Unknown chunk type: {chunk_type}")
continue
ids.append(chunk_id)
embeddings.append(embedding)
metadatas.append(metadata)
documents.append(document)
except Exception as e:
logger.warning(f"Error processing chunk {chunk.get('id', 'unknown')}: {e}")
continue
# Add batch to collection
if ids:
try:
collection.add(
ids=ids,
embeddings=embeddings,
metadatas=metadatas,
documents=documents
)
logger.debug(f"Added batch of {len(ids)} chunks to database")
except Exception as e:
logger.error(f"Error adding batch to database: {e}")
raise
# =============================================================================
# MAIN EXECUTION
# =============================================================================
def main():
"""
Main execution function.
"""
try:
logger.info("Starting PDF ingestion process...")
# Ensure directories exist
ensure_directories()
# Initialize models and database
logger.info("Initializing models and database...")
text_model, image_model = initialize_models()
client, collection = initialize_chromadb()
# Get list of PDF files
pdf_files = []
if os.path.exists(SOURCE_DIRECTORY):
pdf_files = [f for f in os.listdir(SOURCE_DIRECTORY) if f.lower().endswith('.pdf')]
if not pdf_files:
logger.warning(f"No PDF files found in {SOURCE_DIRECTORY}")
logger.info("Please add PDF files to the source directory and run again.")
return
logger.info(f"Found {len(pdf_files)} PDF files to process")
# Process each PDF file with progress bar
with tqdm(pdf_files, desc="Processing PDFs") as pbar:
for pdf_file in pbar:
pdf_path = os.path.join(SOURCE_DIRECTORY, pdf_file)
pbar.set_description(f"Processing {pdf_file}")
# Check if this PDF has already been processed
if is_pdf_already_processed(pdf_path, collection):
continue
try:
process_pdf(pdf_path, text_model, image_model, collection)
except Exception as e:
logger.error(f"Failed to process {pdf_file}: {e}")
continue
# Get final statistics
try:
count = collection.count()
logger.info(f"Ingestion complete! Total chunks in database: {count}")
except Exception as e:
logger.warning(f"Could not get final count: {e}")
logger.info("PDF ingestion process completed successfully!")
except Exception as e:
logger.error(f"Fatal error in main execution: {e}")
raise
if __name__ == "__main__":
main()
|