from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import re

import base64, os
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id

import torch
from PIL import Image

from huggingface_hub import snapshot_download
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor 

# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0"  # HF repo
local_dir = "weights"  # Target local directory

som_generator = MarkHelper()
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
magma_qa_prompt = "<image>\n{} Answer the question briefly."
magma_model_id = "microsoft/Magma-8B"
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True)
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
magam_model.to("cuda")

# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)

print(f"Repository downloaded to: {local_dir}")


yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")

MARKDOWN = """
<div align="center">
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>

[Jianwei Yang](https://jwyang.github.io/)<sup>*</sup><sup>1</sup><sup>†</sup>&nbsp;
[Reuben Tan](https://cs-people.bu.edu/rxtan/)<sup>1</sup><sup>†</sup>&nbsp;
[Qianhui Wu](https://qianhuiwu.github.io/)<sup>1</sup><sup>†</sup>&nbsp;
[Ruijie Zheng](https://ruijiezheng.com/)<sup>2</sup><sup>‡</sup>&nbsp;
[Baolin Peng](https://scholar.google.com/citations?user=u1CNjgwAAAAJ&hl=en&oi=ao)<sup>1</sup><sup>‡</sup>&nbsp;
[Yongyuan Liang](https://cheryyunl.github.io)<sup>2</sup><sup>‡</sup>
[Yu Gu](https://users.umiacs.umd.edu/~hal/)<sup>1</sup>&nbsp;
[Mu Cai](https://pages.cs.wisc.edu/~mucai/)<sup>3</sup>&nbsp;
[Seonghyeon Ye](https://seonghyeonye.github.io/)<sup>4</sup>&nbsp;
[Joel Jang](https://joeljang.github.io/)<sup>5</sup>&nbsp;
[Yuquan Deng](https://scholar.google.com/citations?user=LTC0Q6YAAAAJ&hl=en)<sup>5</sup>&nbsp;
[Lars Liden](https://sites.google.com/site/larsliden)<sup>1</sup>&nbsp;
[Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)<sup>1</sup><sup>▽</sup>

<sup>1</sup> Microsoft Research; <sup>2</sup> University of Maryland; <sup>3</sup> University of Wisconsin-Madison; <sup>4</sup> KAIST; <sup>5</sup> University of Washington

<sup>*</sup> Project lead  <sup>†</sup> First authors  <sup>‡</sup> Second authors  <sup>▽</sup> Leadership  

\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\] &nbsp; \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\] &nbsp; 

This demo is powered by [Gradio](https://gradio.app/) and uses OmniParserv2 to generate Set-of-Mark prompts.
</div>
"""

DEVICE = torch.device('cuda')  

@spaces.GPU
@torch.inference_mode()
def get_som_response(instruction, image_som):
    prompt = magma_som_prompt.format(instruction)
    if magam_model.config.mm_use_image_start_end:
        qs = prompt.replace('<image>', '<image_start><image><image_end>')
    else:
        qs = prompt        
    convs = [{"role": "user", "content": qs}]
    convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs     
    prompt = magma_processor.tokenizer.apply_chat_template(
        convs,
        tokenize=False,
        add_generation_prompt=True
    )

    inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
    inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
    inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
    inputs = inputs.to("cuda")

    magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
    with torch.inference_mode():
        output_ids = magam_model.generate(
            **inputs, 
            temperature=0.0, 
            do_sample=False, 
            num_beams=1, 
            max_new_tokens=128, 
            use_cache=True
        )
    
    prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
    response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
    response = response.replace(prompt_decoded, '').strip()
    return response

@spaces.GPU
@torch.inference_mode()
def get_qa_response(instruction, image):
    prompt = magma_qa_prompt.format(instruction)
    if magam_model.config.mm_use_image_start_end:
        qs = prompt.replace('<image>', '<image_start><image><image_end>')
    else:
        qs = prompt        
    convs = [{"role": "user", "content": qs}]
    convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs     
    prompt = magma_processor.tokenizer.apply_chat_template(
        convs,
        tokenize=False,
        add_generation_prompt=True
    )

    inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
    inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
    inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
    inputs = inputs.to("cuda")

    magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
    with torch.inference_mode():
        output_ids = magam_model.generate(
            **inputs, 
            temperature=0.0, 
            do_sample=False, 
            num_beams=1, 
            max_new_tokens=128, 
            use_cache=True
        )
    
    prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
    response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
    response = response.replace(prompt_decoded, '').strip()
    return response

@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
    image_input,
    box_threshold,
    iou_threshold,
    use_paddleocr,
    imgsz, 
    instruction,
) -> Optional[Image.Image]:

    # image_save_path = 'imgs/saved_image_demo.png'
    # image_input.save(image_save_path)
    # image = Image.open(image_save_path)
    box_overlay_ratio = image_input.size[0] / 3200
    draw_bbox_config = {
        'text_scale': 0.8 * box_overlay_ratio,
        'text_thickness': max(int(2 * box_overlay_ratio), 1),
        'text_padding': max(int(3 * box_overlay_ratio), 1),
        'thickness': max(int(3 * box_overlay_ratio), 1),
    }

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
    text, ocr_bbox = ocr_bbox_rslt
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)  
    parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
    
    if len(instruction) == 0:
        print('finish processing')
        image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
        return image, str(parsed_content_list)

    elif instruction.startswith('Q:'):
        response = get_qa_response(instruction, image_input)
        return image_input, response

    # parsed_content_list = str(parsed_content_list)
    # convert xywh to yxhw
    label_coordinates_yxhw = {}
    for key, val in label_coordinates.items():
        if val[2] < 0 or val[3] < 0:
            continue
        label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
    image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)

    # convert xywh to xyxy
    for key, val in label_coordinates.items():
        label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]

    # normalize label_coordinates
    for key, val in label_coordinates.items():
        label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
    
    magma_response = get_som_response(instruction, image_som)
    print("magma repsonse: ", magma_response)

    # map magma_response into the mark id
    mark_id = extract_mark_id(magma_response)
    if mark_id is not None:
        if str(mark_id) in label_coordinates:
            bbox_for_mark = label_coordinates[str(mark_id)]
        else:
            bbox_for_mark = None
    else:
        bbox_for_mark = None
    
    if bbox_for_mark:
        # draw bbox_for_mark on the image
        image_som = plot_boxes_with_marks(
            image_input, 
            [label_coordinates_yxhw[str(mark_id)]], 
            som_generator, 
            edgecolor=(255,127,111), 
            alpha=30, 
            fn_save=None, 
            normalized_to_pixel=False,
            add_mark=False
        )
    else:
        try:
            if 'box' in magma_response:
                pred_bbox = extract_bbox(magma_response)
                click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
                click_point = [item / 1000 for item in click_point]
            else:
                click_point = pred_2_point(magma_response)
            # de-normalize click_point (width, height)
            click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]

            image_som = plot_circles_with_marks(
                image_input, 
                [click_point],
                som_generator,
                edgecolor=(255,127,111), 
                linewidth=3,
                fn_save=None,
                normalized_to_pixel=False,
                add_mark=False
            )
        except:
            image_som = image_input
    
    return image_som, str(parsed_content_list)

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            with gr.Accordion("Parameters", open=False) as parameter_row:            
                box_threshold_component = gr.Slider(
                    label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
                # set the threshold for removing the bounding boxes with large overlap, default is 0.1
                iou_threshold_component = gr.Slider(
                    label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
                use_paddleocr_component = gr.Checkbox(
                    label='Use PaddleOCR', value=True)
                imgsz_component = gr.Slider(
                    label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
            # text box
            text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
            submit_button_component = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')
            text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')

    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component,
            use_paddleocr_component,
            imgsz_component, 
            text_input_component
        ],
        outputs=[image_output_component, text_output_component]
    )

demo.launch(debug=True, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
# demo.queue().launch(share=False)