Spaces:
Sleeping
Sleeping
initial commit
Browse files- .gitignore +7 -0
- Dockerfile +29 -0
- app.py +185 -0
- chainlit.md +2 -0
- data/paul_graham_essays.txt +0 -0
- pyproject.toml +22 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__/
|
3 |
+
.chainlit
|
4 |
+
*.faiss
|
5 |
+
*.pkl
|
6 |
+
.files
|
7 |
+
.venv
|
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Get a distribution that has uv already installed
|
2 |
+
FROM ghcr.io/astral-sh/uv:python3.13-bookworm-slim
|
3 |
+
|
4 |
+
# Add user - this is the user that will run the app
|
5 |
+
# If you do not set user, the app will run as root (undesirable)
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
|
9 |
+
# Set the home directory and path
|
10 |
+
ENV HOME=/home/user \
|
11 |
+
PATH=/home/user/.local/bin:$PATH
|
12 |
+
|
13 |
+
ENV UVICORN_WS_PROTOCOL=websockets
|
14 |
+
|
15 |
+
# Set the working directory
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
# Copy the app to the container
|
19 |
+
COPY --chown=user . $HOME/app
|
20 |
+
|
21 |
+
# Install the dependencies
|
22 |
+
# RUN uv sync --frozen
|
23 |
+
RUN uv sync
|
24 |
+
|
25 |
+
# Expose the port
|
26 |
+
EXPOSE 7860
|
27 |
+
|
28 |
+
# Run the app
|
29 |
+
CMD ["uv", "run", "chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import chainlit as cl
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from operator import itemgetter
|
5 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
6 |
+
from langchain_community.document_loaders import TextLoader
|
7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
10 |
+
from langchain_core.prompts import PromptTemplate
|
11 |
+
from langchain.schema.output_parser import StrOutputParser
|
12 |
+
from langchain.schema.runnable import RunnablePassthrough
|
13 |
+
from langchain.schema.runnable.config import RunnableConfig
|
14 |
+
from tqdm.asyncio import tqdm_asyncio
|
15 |
+
import asyncio
|
16 |
+
from tqdm.asyncio import tqdm
|
17 |
+
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
|
21 |
+
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
|
22 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
23 |
+
|
24 |
+
if not all([HF_LLM_ENDPOINT, HF_EMBED_ENDPOINT, HF_TOKEN]):
|
25 |
+
raise ValueError("Missing required Hugging Face API environment variables.")
|
26 |
+
|
27 |
+
if not os.path.exists("./data/paul_graham_essays.txt"):
|
28 |
+
raise FileNotFoundError("The specified document file is missing.")
|
29 |
+
|
30 |
+
|
31 |
+
document_loader = TextLoader("./data/paul_graham_essays.txt")
|
32 |
+
documents = document_loader.load()
|
33 |
+
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
35 |
+
split_documents = text_splitter.split_documents(documents)
|
36 |
+
|
37 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
38 |
+
model=HF_EMBED_ENDPOINT,
|
39 |
+
task="feature-extraction",
|
40 |
+
huggingfacehub_api_token=HF_TOKEN,
|
41 |
+
)
|
42 |
+
|
43 |
+
async def add_documents_async(vectorstore, documents):
|
44 |
+
await vectorstore.aadd_documents(documents)
|
45 |
+
|
46 |
+
async def process_batch(vectorstore, batch, is_first_batch, pbar):
|
47 |
+
if is_first_batch:
|
48 |
+
result = await FAISS.afrom_documents(batch, hf_embeddings)
|
49 |
+
else:
|
50 |
+
await add_documents_async(vectorstore, batch)
|
51 |
+
result = vectorstore
|
52 |
+
pbar.update(len(batch))
|
53 |
+
return result
|
54 |
+
|
55 |
+
async def main():
|
56 |
+
print("Indexing Files")
|
57 |
+
|
58 |
+
vectorstore = None
|
59 |
+
batch_size = 32
|
60 |
+
|
61 |
+
batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
|
62 |
+
|
63 |
+
async def process_all_batches():
|
64 |
+
nonlocal vectorstore
|
65 |
+
tasks = []
|
66 |
+
pbars = []
|
67 |
+
|
68 |
+
for i, batch in enumerate(batches):
|
69 |
+
pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
|
70 |
+
pbars.append(pbar)
|
71 |
+
|
72 |
+
if i == 0:
|
73 |
+
vectorstore = await process_batch(None, batch, True, pbar)
|
74 |
+
else:
|
75 |
+
tasks.append(process_batch(vectorstore, batch, False, pbar))
|
76 |
+
|
77 |
+
if tasks:
|
78 |
+
await asyncio.gather(*tasks)
|
79 |
+
|
80 |
+
for pbar in pbars:
|
81 |
+
pbar.close()
|
82 |
+
|
83 |
+
await process_all_batches()
|
84 |
+
|
85 |
+
hf_retriever = vectorstore.as_retriever()
|
86 |
+
print("\nIndexing complete. Vectorstore is ready for use.")
|
87 |
+
return hf_retriever
|
88 |
+
|
89 |
+
async def run():
|
90 |
+
retriever = await main()
|
91 |
+
return retriever
|
92 |
+
|
93 |
+
hf_retriever = asyncio.run(run())
|
94 |
+
|
95 |
+
|
96 |
+
RAG_PROMPT_TEMPLATE = """\
|
97 |
+
<|start_header_id|>system<|end_header_id|>
|
98 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
99 |
+
|
100 |
+
<|start_header_id|>user<|end_header_id|>
|
101 |
+
User Query:
|
102 |
+
{query}
|
103 |
+
|
104 |
+
Context:
|
105 |
+
{context}<|eot_id|>
|
106 |
+
|
107 |
+
<|start_header_id|>assistant<|end_header_id|>
|
108 |
+
"""
|
109 |
+
|
110 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
111 |
+
|
112 |
+
|
113 |
+
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
114 |
+
hf_llm = HuggingFaceEndpoint(
|
115 |
+
endpoint_url=HF_LLM_ENDPOINT,
|
116 |
+
max_new_tokens=512,
|
117 |
+
top_k=10,
|
118 |
+
top_p=0.95,
|
119 |
+
temperature=0.3,
|
120 |
+
repetition_penalty=1.15,
|
121 |
+
huggingfacehub_api_token=HF_TOKEN,
|
122 |
+
)
|
123 |
+
|
124 |
+
@cl.author_rename
|
125 |
+
def rename(original_author: str):
|
126 |
+
"""
|
127 |
+
This function can be used to rename the 'author' of a message.
|
128 |
+
|
129 |
+
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
|
130 |
+
"""
|
131 |
+
rename_dict = {
|
132 |
+
"Assistant" : "Paul Graham Essay Bot"
|
133 |
+
}
|
134 |
+
return rename_dict.get(original_author, original_author)
|
135 |
+
|
136 |
+
@cl.on_chat_start
|
137 |
+
async def start_chat():
|
138 |
+
"""
|
139 |
+
This function will be called at the start of every user session.
|
140 |
+
|
141 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
142 |
+
|
143 |
+
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
|
144 |
+
"""
|
145 |
+
|
146 |
+
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
|
147 |
+
lcel_rag_chain = (
|
148 |
+
{"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
|
149 |
+
| rag_prompt | hf_llm
|
150 |
+
)
|
151 |
+
|
152 |
+
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
153 |
+
await cl.Message(content="Welcome to the Paul Graham Essay Bot! Ask me anything about Paul Graham's essays.").send()
|
154 |
+
|
155 |
+
@cl.on_message
|
156 |
+
async def main(message: cl.Message):
|
157 |
+
"""
|
158 |
+
This function will be called every time a message is received from a session.
|
159 |
+
|
160 |
+
We will use the LCEL RAG chain to generate a response to the user query.
|
161 |
+
|
162 |
+
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
|
163 |
+
"""
|
164 |
+
lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
|
165 |
+
|
166 |
+
msg = cl.Message(content="")
|
167 |
+
|
168 |
+
# Create a buffer to store the complete response
|
169 |
+
complete_response = ""
|
170 |
+
|
171 |
+
async for chunk in lcel_rag_chain.astream(
|
172 |
+
{"query": message.content},
|
173 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
174 |
+
):
|
175 |
+
# Clean the chunk of any <|eot_id|> tokens
|
176 |
+
clean_chunk = chunk.replace("<|eot_id|>", "")
|
177 |
+
complete_response += chunk # Store original for final cleaning
|
178 |
+
await msg.stream_token(clean_chunk)
|
179 |
+
|
180 |
+
# If <|eot_id|> appears at the end of the complete response, remove it
|
181 |
+
if complete_response.endswith("<|eot_id|>"):
|
182 |
+
# Update the final message content without the token
|
183 |
+
await msg.update(content=complete_response.replace("<|eot_id|>", ""))
|
184 |
+
|
185 |
+
await msg.send()
|
chainlit.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Paul Graham Essay Bot
|
2 |
+
Welcome to the Paul Graham Essay Bot, a retrieval-augmented generation (RAG) chatbot powered by Hugging Face and FAISS vector search.
|
data/paul_graham_essays.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "15-app"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Session 15 - Open Source Endpoints"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.09"
|
7 |
+
dependencies = [
|
8 |
+
"asyncio===3.4.3",
|
9 |
+
"chainlit==2.2.1",
|
10 |
+
"huggingface-hub==0.27.0",
|
11 |
+
"langchain-huggingface==0.1.2",
|
12 |
+
"langchain==0.3.19",
|
13 |
+
"langchain-community==0.3.18",
|
14 |
+
"langsmith==0.3.11",
|
15 |
+
"python-dotenv==1.0.1",
|
16 |
+
"tqdm==4.67.1",
|
17 |
+
"langchain-openai==0.3.7",
|
18 |
+
"langchain-text-splitters==0.3.6",
|
19 |
+
"jupyter>=1.1.1",
|
20 |
+
"faiss-cpu>=1.10.0",
|
21 |
+
"websockets>=15.0",
|
22 |
+
]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|