Spaces:
Sleeping
Sleeping
initial commit
Browse files- .gitignore +12 -0
- Dockerfile +30 -0
- app.py +359 -0
- chainlit.md +2 -0
- data/Instruments_Definitions.xlsx +0 -0
- example_files/Instruments_Definitions.xlsx +0 -0
- example_files/docx/Protocol_NOAPS v1.0.docx +0 -0
- example_files/docx/Protocol_PKAS v1.0.docx +0 -0
- example_files/docx/Protocol_PPMT v1.0.docx +0 -0
- example_files/pdf/Protocol_NOAPS v1.0.pdf +0 -0
- example_files/pdf/Protocol_PKAS v1.0.pdf +0 -0
- example_files/pdf/Protocol_PPMT v1.0.pdf +0 -0
- pyproject.toml +38 -0
- requirements.txt +210 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.chainlit/
|
3 |
+
.venv/
|
4 |
+
.env
|
5 |
+
/output/
|
6 |
+
/upload/
|
7 |
+
*.jsonl
|
8 |
+
/models/
|
9 |
+
*z*.py
|
10 |
+
*z*.md
|
11 |
+
*z*.ipynb
|
12 |
+
/z*
|
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Get a distribution that has uv already installed
|
2 |
+
FROM ghcr.io/astral-sh/uv:python3.13-bookworm-slim
|
3 |
+
|
4 |
+
# Add user - this is the user that will run the app
|
5 |
+
# If you do not set user, the app will run as root (undesirable)
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
|
9 |
+
# Set the home directory and path
|
10 |
+
ENV HOME=/home/user \
|
11 |
+
PATH=/home/user/.local/bin:$PATH
|
12 |
+
|
13 |
+
ENV UVICORN_WS_PROTOCOL=websockets
|
14 |
+
|
15 |
+
|
16 |
+
# Set the working directory
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
|
19 |
+
# Copy the app to the container
|
20 |
+
COPY --chown=user . $HOME/app
|
21 |
+
|
22 |
+
# Install the dependencies
|
23 |
+
# RUN uv sync --frozen
|
24 |
+
RUN uv sync
|
25 |
+
|
26 |
+
# Expose the port
|
27 |
+
EXPOSE 7860
|
28 |
+
|
29 |
+
# Run the app
|
30 |
+
CMD ["uv", "run", "chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import chainlit as cl
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from langchain_core.documents import Document
|
8 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
9 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
10 |
+
from langchain_community.vectorstores import Qdrant
|
11 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
12 |
+
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
from langchain_openai import ChatOpenAI
|
14 |
+
from langchain_core.prompts import ChatPromptTemplate
|
15 |
+
from langchain.tools import tool
|
16 |
+
from langchain.schema import HumanMessage
|
17 |
+
from typing_extensions import List, TypedDict
|
18 |
+
from operator import itemgetter
|
19 |
+
from langchain.agents import AgentExecutor, create_openai_tools_agent
|
20 |
+
from langchain_core.prompts import MessagesPlaceholder
|
21 |
+
from qdrant_client import QdrantClient
|
22 |
+
from qdrant_client.models import VectorParams, Distance
|
23 |
+
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
|
27 |
+
UPLOAD_PATH = "upload/"
|
28 |
+
OUTPUT_PATH = "output/"
|
29 |
+
INITIAL_DATA_PATH = "./data/Instruments_Definitions.xlsx"
|
30 |
+
os.makedirs(UPLOAD_PATH, exist_ok=True)
|
31 |
+
os.makedirs(OUTPUT_PATH, exist_ok=True)
|
32 |
+
|
33 |
+
# Initialize embeddings model
|
34 |
+
model_id = "Snowflake/snowflake-arctic-embed-m"
|
35 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_id)
|
36 |
+
semantic_splitter = SemanticChunker(embedding_model, add_start_index=True, buffer_size=30)
|
37 |
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
38 |
+
|
39 |
+
# Export comparison prompt
|
40 |
+
export_prompt = """
|
41 |
+
CONTEXT:
|
42 |
+
{context}
|
43 |
+
|
44 |
+
QUERY:
|
45 |
+
{question}
|
46 |
+
|
47 |
+
You are a helpful assistant. Use the available context to answer the question.
|
48 |
+
|
49 |
+
Between these two files containing protocols, identify and match **entire assessment sections** based on conceptual similarity. Do NOT match individual questions.
|
50 |
+
|
51 |
+
### **Output Format:**
|
52 |
+
Return the response in **valid JSON format** structured as a list of dictionaries, where each dictionary contains:
|
53 |
+
[
|
54 |
+
{{
|
55 |
+
"Derived Description": "A short name for the matched concept",
|
56 |
+
"Protocol_1": "Protocol 1 - Matching Element",
|
57 |
+
"Protocol_2": "Protocol 2 - Matching Element"
|
58 |
+
}},
|
59 |
+
...
|
60 |
+
]
|
61 |
+
### **Example Output:**
|
62 |
+
[
|
63 |
+
{{
|
64 |
+
"Derived Description": "Pain Coping Strategies",
|
65 |
+
"Protocol_1": "Pain Coping Strategy Scale (PCSS-9)",
|
66 |
+
"Protocol_2": "Chronic Pain Adjustment Index (CPAI-10)"
|
67 |
+
}},
|
68 |
+
{{
|
69 |
+
"Derived Description": "Work Stress and Fatigue",
|
70 |
+
"Protocol_1": "Work-Related Stress Scale (WRSS-8)",
|
71 |
+
"Protocol_2": "Occupational Fatigue Index (OFI-7)"
|
72 |
+
}},
|
73 |
+
...
|
74 |
+
]
|
75 |
+
|
76 |
+
### Rules:
|
77 |
+
1. Only output **valid JSON** with no explanations, summaries, or markdown formatting.
|
78 |
+
2. Ensure each entry in the JSON list represents a single matched data element from the two protocols.
|
79 |
+
3. If no matching element is found in a protocol, leave it empty ("").
|
80 |
+
4. **Do NOT include headers, explanations, or additional formatting**—only return the raw JSON list.
|
81 |
+
5. It should include all the elements in the two protocols.
|
82 |
+
6. If it cannot match the element, create the row and include the protocol it did find and put "could not match" in the other protocol column.
|
83 |
+
7. protocol should be the between
|
84 |
+
"""
|
85 |
+
|
86 |
+
compare_export_prompt = ChatPromptTemplate.from_template(export_prompt)
|
87 |
+
|
88 |
+
QUERY_PROMPT = """
|
89 |
+
You are a helpful assistant. Use the available context to answer the question concisely and informatively.
|
90 |
+
|
91 |
+
CONTEXT:
|
92 |
+
{context}
|
93 |
+
|
94 |
+
QUERY:
|
95 |
+
{question}
|
96 |
+
|
97 |
+
Provide a natural-language response using the given information. If you do not know the answer, say so.
|
98 |
+
"""
|
99 |
+
|
100 |
+
query_prompt = ChatPromptTemplate.from_template(QUERY_PROMPT)
|
101 |
+
|
102 |
+
|
103 |
+
@tool
|
104 |
+
def document_query_tool(question: str) -> str:
|
105 |
+
"""Retrieves relevant document sections and answers questions based on the uploaded documents."""
|
106 |
+
|
107 |
+
retriever = cl.user_session.get("qdrant_retriever")
|
108 |
+
if not retriever:
|
109 |
+
return "Error: No documents available for retrieval. Please upload two PDF files first."
|
110 |
+
retriever = retriever.with_config({"k": 10})
|
111 |
+
|
112 |
+
# Use a RAG chain similar to the comparison tool
|
113 |
+
rag_chain = (
|
114 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
115 |
+
| query_prompt | llm | StrOutputParser()
|
116 |
+
)
|
117 |
+
response_text = rag_chain.invoke({"question": question})
|
118 |
+
|
119 |
+
# Get the retrieved docs for context
|
120 |
+
retrieved_docs = retriever.invoke(question)
|
121 |
+
|
122 |
+
return {
|
123 |
+
"messages": [HumanMessage(content=response_text)],
|
124 |
+
"context": retrieved_docs
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
@tool
|
129 |
+
def document_comparison_tool(question: str) -> str:
|
130 |
+
"""Compares the two uploaded documents, identifies matched elements, exports them as JSON, formats into CSV, and provides a download link."""
|
131 |
+
|
132 |
+
# Retrieve the vector database retriever
|
133 |
+
retriever = cl.user_session.get("qdrant_retriever")
|
134 |
+
if not retriever:
|
135 |
+
return "Error: No documents available for retrieval. Please upload two PDF files first."
|
136 |
+
|
137 |
+
# Process query using RAG
|
138 |
+
rag_chain = (
|
139 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
140 |
+
| compare_export_prompt | llm | StrOutputParser()
|
141 |
+
)
|
142 |
+
response_text = rag_chain.invoke({"question": question})
|
143 |
+
|
144 |
+
# Parse response and save as CSV
|
145 |
+
try:
|
146 |
+
structured_data = json.loads(response_text)
|
147 |
+
if not structured_data:
|
148 |
+
return "Error: No matched elements found."
|
149 |
+
|
150 |
+
# Define output file path
|
151 |
+
file_path = os.path.join(OUTPUT_PATH, "comparison_results.csv")
|
152 |
+
|
153 |
+
# Save to CSV
|
154 |
+
df = pd.DataFrame(structured_data, columns=["Derived Description", "Protocol_1", "Protocol_2"])
|
155 |
+
df.to_csv(file_path, index=False)
|
156 |
+
|
157 |
+
# Send the message with the file directly from the tool
|
158 |
+
cl.run_sync(
|
159 |
+
cl.Message(
|
160 |
+
content="Comparison complete! Download the CSV below:",
|
161 |
+
elements=[cl.File(name="comparison_results.csv", path=file_path, display="inline")],
|
162 |
+
).send()
|
163 |
+
)
|
164 |
+
|
165 |
+
# Return a simple confirmation message
|
166 |
+
return "Comparison results have been generated and displayed."
|
167 |
+
|
168 |
+
except json.JSONDecodeError:
|
169 |
+
return "Error: Response is not valid JSON."
|
170 |
+
|
171 |
+
|
172 |
+
# Define tools for the agent
|
173 |
+
tools = [document_query_tool, document_comparison_tool]
|
174 |
+
|
175 |
+
# Set up the agent with a system prompt
|
176 |
+
system_prompt = """You are an intelligent document analysis assistant. You have access to two tools:
|
177 |
+
|
178 |
+
1. document_query_tool: Use this when a user wants information or has questions about the content of uploaded documents.
|
179 |
+
2. document_comparison_tool: Use this when a user wants to compare elements between two uploaded documents or export comparison results.
|
180 |
+
|
181 |
+
Analyze the user's request carefully to determine which tool is most appropriate.
|
182 |
+
"""
|
183 |
+
|
184 |
+
# Create the agent using OpenAI function calling
|
185 |
+
agent_prompt = ChatPromptTemplate.from_messages([
|
186 |
+
("system", system_prompt),
|
187 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
188 |
+
("human", "{input}"),
|
189 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
190 |
+
])
|
191 |
+
|
192 |
+
agent = create_openai_tools_agent(
|
193 |
+
llm=ChatOpenAI(model="gpt-4o", temperature=0),
|
194 |
+
tools=tools,
|
195 |
+
prompt=agent_prompt
|
196 |
+
)
|
197 |
+
|
198 |
+
# Create the agent executor
|
199 |
+
agent_executor = AgentExecutor.from_agent_and_tools(
|
200 |
+
agent=agent,
|
201 |
+
tools=tools,
|
202 |
+
verbose=True,
|
203 |
+
handle_parsing_errors=True,
|
204 |
+
)
|
205 |
+
|
206 |
+
|
207 |
+
def initialize_vector_store():
|
208 |
+
"""Initialize an empty Qdrant vector store"""
|
209 |
+
try:
|
210 |
+
# Create a Qdrant client for in-memory storage
|
211 |
+
client = QdrantClient(location=":memory:")
|
212 |
+
|
213 |
+
# Create the collection with the appropriate vector size
|
214 |
+
# Snowflake/snowflake-arctic-embed-m produces 768-dimensional vectors
|
215 |
+
vector_size = 768 # Changed from 1536 to match your embedding model
|
216 |
+
|
217 |
+
# Check if collection exists, if not create it
|
218 |
+
collections = client.get_collections().collections
|
219 |
+
collection_names = [collection.name for collection in collections]
|
220 |
+
|
221 |
+
if "document_comparison" not in collection_names:
|
222 |
+
client.create_collection(
|
223 |
+
collection_name="document_comparison",
|
224 |
+
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE)
|
225 |
+
)
|
226 |
+
print("Created new collection: document_comparison")
|
227 |
+
|
228 |
+
# Create the vector store with the client
|
229 |
+
vectorstore = Qdrant(
|
230 |
+
client=client,
|
231 |
+
collection_name="document_comparison",
|
232 |
+
embeddings=embedding_model
|
233 |
+
)
|
234 |
+
print("Vector store initialized successfully")
|
235 |
+
return vectorstore
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Error initializing vector store: {str(e)}")
|
238 |
+
return None
|
239 |
+
|
240 |
+
|
241 |
+
async def load_reference_data(vectorstore):
|
242 |
+
"""Load reference Excel data into the vector database"""
|
243 |
+
if not os.path.exists(INITIAL_DATA_PATH):
|
244 |
+
print(f"Warning: Initial data file {INITIAL_DATA_PATH} not found")
|
245 |
+
return vectorstore
|
246 |
+
|
247 |
+
try:
|
248 |
+
# Load Excel file
|
249 |
+
df = pd.read_excel(INITIAL_DATA_PATH)
|
250 |
+
|
251 |
+
# Convert DataFrame to documents
|
252 |
+
documents = []
|
253 |
+
for _, row in df.iterrows():
|
254 |
+
# Combine all columns into a single text
|
255 |
+
content = " ".join([f"{col}: {str(val)}" for col, val in row.items()])
|
256 |
+
doc = Document(page_content=content, metadata={"source": "Instruments_Definitions.xlsx"})
|
257 |
+
documents.append(doc)
|
258 |
+
|
259 |
+
# Add documents to vector store
|
260 |
+
if documents:
|
261 |
+
vectorstore.add_documents(documents)
|
262 |
+
print(f"Successfully loaded {len(documents)} entries from {INITIAL_DATA_PATH}")
|
263 |
+
|
264 |
+
return vectorstore
|
265 |
+
except Exception as e:
|
266 |
+
print(f"Error loading reference data: {str(e)}")
|
267 |
+
return vectorstore
|
268 |
+
|
269 |
+
|
270 |
+
async def process_uploaded_files(files, vectorstore):
|
271 |
+
"""Process uploaded PDF files and add them to the vector store"""
|
272 |
+
documents_with_metadata = []
|
273 |
+
for file in files:
|
274 |
+
file_path = os.path.join(UPLOAD_PATH, file.name)
|
275 |
+
shutil.copyfile(file.path, file_path)
|
276 |
+
|
277 |
+
loader = PyMuPDFLoader(file_path)
|
278 |
+
documents = loader.load()
|
279 |
+
|
280 |
+
for doc in documents:
|
281 |
+
source_name = file.name
|
282 |
+
chunks = semantic_splitter.split_text(doc.page_content)
|
283 |
+
for chunk in chunks:
|
284 |
+
doc_chunk = Document(page_content=chunk, metadata={"source": source_name})
|
285 |
+
documents_with_metadata.append(doc_chunk)
|
286 |
+
|
287 |
+
if documents_with_metadata:
|
288 |
+
# Add documents to vector store
|
289 |
+
vectorstore.add_documents(documents_with_metadata)
|
290 |
+
print(f"Added {len(documents_with_metadata)} chunks from uploaded files")
|
291 |
+
return True
|
292 |
+
return False
|
293 |
+
|
294 |
+
|
295 |
+
@cl.on_chat_start
|
296 |
+
async def start():
|
297 |
+
# Initialize chat history for the agent
|
298 |
+
cl.user_session.set("chat_history", [])
|
299 |
+
|
300 |
+
# Initialize vector store
|
301 |
+
vectorstore = initialize_vector_store()
|
302 |
+
if not vectorstore:
|
303 |
+
await cl.Message("Error: Could not initialize vector store.").send()
|
304 |
+
return
|
305 |
+
|
306 |
+
# Load reference data
|
307 |
+
with cl.Step("Loading reference data"):
|
308 |
+
vectorstore = await load_reference_data(vectorstore)
|
309 |
+
cl.user_session.set("qdrant_vectorstore", vectorstore)
|
310 |
+
cl.user_session.set("qdrant_retriever", vectorstore.as_retriever())
|
311 |
+
await cl.Message("Reference data loaded successfully!").send()
|
312 |
+
|
313 |
+
# Ask for PDF uploads
|
314 |
+
files = await cl.AskFileMessage(
|
315 |
+
content="Please upload **two PDF files** for comparison:",
|
316 |
+
accept=["application/pdf"],
|
317 |
+
max_files=2
|
318 |
+
).send()
|
319 |
+
|
320 |
+
if len(files) != 2:
|
321 |
+
await cl.Message("Error: You must upload exactly two PDF files.").send()
|
322 |
+
return
|
323 |
+
|
324 |
+
# Process uploaded files
|
325 |
+
with cl.Step("Processing uploaded files"):
|
326 |
+
success = await process_uploaded_files(files, vectorstore)
|
327 |
+
if success:
|
328 |
+
# Update the retriever with the latest vector store
|
329 |
+
cl.user_session.set("qdrant_retriever", vectorstore.as_retriever())
|
330 |
+
await cl.Message("Files uploaded and processed successfully! You can now enter your query.").send()
|
331 |
+
else:
|
332 |
+
await cl.Message("Error: Unable to process files. Please try again.").send()
|
333 |
+
|
334 |
+
|
335 |
+
@cl.on_message
|
336 |
+
async def handle_message(message: cl.Message):
|
337 |
+
# Get chat history
|
338 |
+
chat_history = cl.user_session.get("chat_history", [])
|
339 |
+
|
340 |
+
# Run the agent
|
341 |
+
with cl.Step("Agent thinking"):
|
342 |
+
response = await cl.make_async(agent_executor.invoke)(
|
343 |
+
{"input": message.content, "chat_history": chat_history}
|
344 |
+
)
|
345 |
+
|
346 |
+
# Handle the response based on the tool that was called
|
347 |
+
if isinstance(response["output"], dict) and "messages" in response["output"]:
|
348 |
+
# This is from document_query_tool
|
349 |
+
await cl.Message(response["output"]["messages"][0].content).send()
|
350 |
+
else:
|
351 |
+
# Generic response (including the confirmation from document_comparison_tool)
|
352 |
+
await cl.Message(content=str(response["output"])).send()
|
353 |
+
|
354 |
+
# Update chat history with the new exchange
|
355 |
+
chat_history.extend([
|
356 |
+
HumanMessage(content=message.content),
|
357 |
+
HumanMessage(content=str(response["output"]))
|
358 |
+
])
|
359 |
+
cl.user_session.set("chat_history", chat_history)
|
chainlit.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Welcome to Chat with Your Text File
|
2 |
+
With this application, you can compare uploaded protocol files
|
data/Instruments_Definitions.xlsx
ADDED
Binary file (10 kB). View file
|
|
example_files/Instruments_Definitions.xlsx
ADDED
Binary file (10 kB). View file
|
|
example_files/docx/Protocol_NOAPS v1.0.docx
ADDED
Binary file (20.8 kB). View file
|
|
example_files/docx/Protocol_PKAS v1.0.docx
ADDED
Binary file (26.2 kB). View file
|
|
example_files/docx/Protocol_PPMT v1.0.docx
ADDED
Binary file (20.5 kB). View file
|
|
example_files/pdf/Protocol_NOAPS v1.0.pdf
ADDED
Binary file (75 kB). View file
|
|
example_files/pdf/Protocol_PKAS v1.0.pdf
ADDED
Binary file (140 kB). View file
|
|
example_files/pdf/Protocol_PPMT v1.0.pdf
ADDED
Binary file (48 kB). View file
|
|
pyproject.toml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "protocol-sync"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "midterm POC huggingface project"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.13"
|
7 |
+
dependencies = [
|
8 |
+
"IProgress",
|
9 |
+
"PyMuPDF",
|
10 |
+
"accelerate",
|
11 |
+
"chainlit",
|
12 |
+
"huggingface_hub",
|
13 |
+
"ipykernel",
|
14 |
+
"ipywidgets",
|
15 |
+
"langchain",
|
16 |
+
"langchain-community",
|
17 |
+
"langchain-core",
|
18 |
+
"langchain-experimental",
|
19 |
+
"langchain-huggingface",
|
20 |
+
"langchain-openai",
|
21 |
+
"langchain-qdrant",
|
22 |
+
"langchain-text-splitters",
|
23 |
+
"langgraph",
|
24 |
+
"langsmith",
|
25 |
+
"lxml",
|
26 |
+
"openai",
|
27 |
+
"pymupdf",
|
28 |
+
"pypdf2",
|
29 |
+
"qdrant-client",
|
30 |
+
"ragas",
|
31 |
+
"torch",
|
32 |
+
"transformers",
|
33 |
+
"tqdm",
|
34 |
+
"unstructured",
|
35 |
+
"wandb",
|
36 |
+
"websockets",
|
37 |
+
"openpyxl",
|
38 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.4.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
aiohappyeyeballs==2.4.6
|
4 |
+
aiohttp==3.11.13
|
5 |
+
aiosignal==1.3.2
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.8.0
|
8 |
+
appdirs==1.4.4
|
9 |
+
asttokens==3.0.0
|
10 |
+
asyncer==0.0.7
|
11 |
+
attrs==25.1.0
|
12 |
+
backoff==2.2.1
|
13 |
+
beautifulsoup4==4.13.3
|
14 |
+
bidict==0.23.1
|
15 |
+
certifi==2025.1.31
|
16 |
+
cffi==1.17.1
|
17 |
+
chainlit==2.2.1
|
18 |
+
chardet==5.2.0
|
19 |
+
charset-normalizer==3.4.1
|
20 |
+
chevron==0.14.0
|
21 |
+
click==8.1.8
|
22 |
+
comm==0.2.2
|
23 |
+
cryptography==44.0.1
|
24 |
+
dataclasses-json==0.6.7
|
25 |
+
datasets==3.3.2
|
26 |
+
debugpy==1.8.12
|
27 |
+
decorator==5.2.1
|
28 |
+
deepdiff==8.2.0
|
29 |
+
deprecated==1.2.18
|
30 |
+
dill==0.3.8
|
31 |
+
diskcache==5.6.3
|
32 |
+
distro==1.9.0
|
33 |
+
docker-pycreds==0.4.0
|
34 |
+
emoji==2.14.1
|
35 |
+
executing==2.2.0
|
36 |
+
fastapi==0.115.8
|
37 |
+
filelock==3.17.0
|
38 |
+
filetype==1.2.0
|
39 |
+
frozenlist==1.5.0
|
40 |
+
fsspec==2024.12.0
|
41 |
+
gitdb==4.0.12
|
42 |
+
gitpython==3.1.44
|
43 |
+
googleapis-common-protos==1.68.0
|
44 |
+
greenlet==3.1.1
|
45 |
+
grpcio==1.70.0
|
46 |
+
grpcio-tools==1.70.0
|
47 |
+
h11==0.14.0
|
48 |
+
h2==4.2.0
|
49 |
+
hpack==4.1.0
|
50 |
+
httpcore==1.0.7
|
51 |
+
httpx==0.28.1
|
52 |
+
httpx-sse==0.4.0
|
53 |
+
huggingface-hub==0.29.1
|
54 |
+
hyperframe==6.1.0
|
55 |
+
idna==3.10
|
56 |
+
importlib-metadata==8.5.0
|
57 |
+
iprogress==0.4
|
58 |
+
ipykernel==6.29.5
|
59 |
+
ipython==8.32.0
|
60 |
+
ipywidgets==8.1.5
|
61 |
+
jedi==0.19.2
|
62 |
+
jinja2==3.1.5
|
63 |
+
jiter==0.8.2
|
64 |
+
joblib==1.4.2
|
65 |
+
jsonpatch==1.33
|
66 |
+
jsonpath-python==1.0.6
|
67 |
+
jsonpointer==3.0.0
|
68 |
+
jupyter-client==8.6.3
|
69 |
+
jupyter-core==5.7.2
|
70 |
+
jupyterlab-widgets==3.0.13
|
71 |
+
langchain==0.3.15
|
72 |
+
langchain-community==0.3.15
|
73 |
+
langchain-core==0.3.31
|
74 |
+
langchain-experimental==0.3.4
|
75 |
+
langchain-huggingface==0.1.2
|
76 |
+
langchain-openai==0.3.1
|
77 |
+
langchain-qdrant==0.2.0
|
78 |
+
langchain-text-splitters==0.3.5
|
79 |
+
langdetect==1.0.9
|
80 |
+
langgraph==0.2.74
|
81 |
+
langgraph-checkpoint==2.0.16
|
82 |
+
langgraph-sdk==0.1.53
|
83 |
+
langsmith==0.3.10
|
84 |
+
lazify==0.4.0
|
85 |
+
literalai==0.1.103
|
86 |
+
lxml==5.3.1
|
87 |
+
markupsafe==3.0.2
|
88 |
+
marshmallow==3.26.1
|
89 |
+
matplotlib-inline==0.1.7
|
90 |
+
mpmath==1.3.0
|
91 |
+
msgpack==1.1.0
|
92 |
+
multidict==6.1.0
|
93 |
+
multiprocess==0.70.16
|
94 |
+
mypy-extensions==1.0.0
|
95 |
+
nest-asyncio==1.6.0
|
96 |
+
networkx==3.4.2
|
97 |
+
nltk==3.9.1
|
98 |
+
numpy==2.2.3
|
99 |
+
nvidia-cublas-cu12==12.4.5.8
|
100 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
101 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
102 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
103 |
+
nvidia-cudnn-cu12==9.1.0.70
|
104 |
+
nvidia-cufft-cu12==11.2.1.3
|
105 |
+
nvidia-curand-cu12==10.3.5.147
|
106 |
+
nvidia-cusolver-cu12==11.6.1.9
|
107 |
+
nvidia-cusparse-cu12==12.3.1.170
|
108 |
+
nvidia-cusparselt-cu12==0.6.2
|
109 |
+
nvidia-nccl-cu12==2.21.5
|
110 |
+
nvidia-nvjitlink-cu12==12.4.127
|
111 |
+
nvidia-nvtx-cu12==12.4.127
|
112 |
+
openai==1.64.0
|
113 |
+
opentelemetry-api==1.29.0
|
114 |
+
opentelemetry-exporter-otlp==1.29.0
|
115 |
+
opentelemetry-exporter-otlp-proto-common==1.29.0
|
116 |
+
opentelemetry-exporter-otlp-proto-grpc==1.29.0
|
117 |
+
opentelemetry-exporter-otlp-proto-http==1.29.0
|
118 |
+
opentelemetry-instrumentation==0.50b0
|
119 |
+
opentelemetry-proto==1.29.0
|
120 |
+
opentelemetry-sdk==1.29.0
|
121 |
+
opentelemetry-semantic-conventions==0.50b0
|
122 |
+
orderly-set==5.3.0
|
123 |
+
orjson==3.10.15
|
124 |
+
packaging==24.2
|
125 |
+
pandas==2.2.3
|
126 |
+
parso==0.8.4
|
127 |
+
pexpect==4.9.0
|
128 |
+
pillow==11.1.0
|
129 |
+
platformdirs==4.3.6
|
130 |
+
portalocker==2.10.1
|
131 |
+
prompt-toolkit==3.0.50
|
132 |
+
propcache==0.3.0
|
133 |
+
protobuf==5.29.3
|
134 |
+
psutil==7.0.0
|
135 |
+
ptyprocess==0.7.0
|
136 |
+
pure-eval==0.2.3
|
137 |
+
pyarrow==19.0.1
|
138 |
+
pycparser==2.22
|
139 |
+
pydantic==2.10.6
|
140 |
+
pydantic-core==2.27.2
|
141 |
+
pydantic-settings==2.8.0
|
142 |
+
pygments==2.19.1
|
143 |
+
pyjwt==2.10.1
|
144 |
+
pymupdf==1.25.3
|
145 |
+
pypdf==5.3.0
|
146 |
+
pypdf2==3.0.1
|
147 |
+
python-dateutil==2.9.0.post0
|
148 |
+
python-dotenv==1.0.1
|
149 |
+
python-engineio==4.11.2
|
150 |
+
python-iso639==2025.2.18
|
151 |
+
python-magic==0.4.27
|
152 |
+
python-multipart==0.0.18
|
153 |
+
python-socketio==5.12.1
|
154 |
+
pytz==2025.1
|
155 |
+
pyyaml==6.0.2
|
156 |
+
pyzmq==26.2.1
|
157 |
+
qdrant-client==1.13.2
|
158 |
+
ragas==0.2.13
|
159 |
+
rapidfuzz==3.12.1
|
160 |
+
regex==2024.11.6
|
161 |
+
requests==2.32.3
|
162 |
+
requests-toolbelt==1.0.0
|
163 |
+
safetensors==0.5.2
|
164 |
+
scikit-learn==1.6.1
|
165 |
+
scipy==1.15.2
|
166 |
+
sentence-transformers==3.4.1
|
167 |
+
sentry-sdk==2.22.0
|
168 |
+
setproctitle==1.3.5
|
169 |
+
setuptools==75.8.0
|
170 |
+
simple-websocket==1.1.0
|
171 |
+
six==1.17.0
|
172 |
+
smmap==5.0.2
|
173 |
+
sniffio==1.3.1
|
174 |
+
soupsieve==2.6
|
175 |
+
sqlalchemy==2.0.38
|
176 |
+
stack-data==0.6.3
|
177 |
+
starlette==0.41.3
|
178 |
+
sympy==1.13.1
|
179 |
+
syncer==2.0.3
|
180 |
+
tabulate==0.9.0
|
181 |
+
tenacity==9.0.0
|
182 |
+
threadpoolctl==3.5.0
|
183 |
+
tiktoken==0.9.0
|
184 |
+
tokenizers==0.21.0
|
185 |
+
tomli==2.2.1
|
186 |
+
torch==2.6.0
|
187 |
+
tornado==6.4.2
|
188 |
+
tqdm==4.67.1
|
189 |
+
traitlets==5.14.3
|
190 |
+
transformers==4.49.0
|
191 |
+
triton==3.2.0
|
192 |
+
typing-extensions==4.12.2
|
193 |
+
typing-inspect==0.9.0
|
194 |
+
tzdata==2025.1
|
195 |
+
unstructured==0.14.8
|
196 |
+
unstructured-client==0.25.9
|
197 |
+
uptrace==1.29.0
|
198 |
+
urllib3==2.3.0
|
199 |
+
uvicorn==0.34.0
|
200 |
+
wandb==0.19.7
|
201 |
+
watchfiles==0.20.0
|
202 |
+
wcwidth==0.2.13
|
203 |
+
websockets==15.0
|
204 |
+
widgetsnbextension==4.0.13
|
205 |
+
wrapt==1.17.2
|
206 |
+
wsproto==1.2.0
|
207 |
+
xxhash==3.5.0
|
208 |
+
yarl==1.18.3
|
209 |
+
zipp==3.21.0
|
210 |
+
zstandard==0.23.0
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|