Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,14 +8,11 @@ import spaces
|
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
| 10 |
from generator import Segment, load_csm_1b
|
| 11 |
-
from huggingface_hub import hf_hub_download, login
|
| 12 |
from watermarking import watermark
|
| 13 |
|
| 14 |
-
|
| 15 |
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60))
|
| 16 |
-
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
|
| 17 |
-
|
| 18 |
-
login(token=api_key)
|
| 19 |
|
| 20 |
SPACE_INTRO_TEXT = """\
|
| 21 |
# Sesame CSM 1B
|
|
@@ -24,12 +21,6 @@ Generate from CSM 1B (Conversational Speech Model).
|
|
| 24 |
Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).
|
| 25 |
Checkpoint is [hosted on HuggingFace](https://huggingface.co/sesame/csm-1b).
|
| 26 |
|
| 27 |
-
Try out our interactive demo [sesame.com/voicedemo](https://www.sesame.com/voicedemo),
|
| 28 |
-
this uses a fine-tuned variant of CSM.
|
| 29 |
-
|
| 30 |
-
The model has some capacity for non-English languages due to data contamination in the training
|
| 31 |
-
data, but it is likely not to perform well.
|
| 32 |
-
|
| 33 |
---
|
| 34 |
|
| 35 |
"""
|
|
@@ -87,20 +78,6 @@ SPEAKER_PROMPTS = {
|
|
| 87 |
),
|
| 88 |
"audio": "prompts/read_speech_b.wav",
|
| 89 |
},
|
| 90 |
-
"read_speech_c": {
|
| 91 |
-
"text": (
|
| 92 |
-
"All passed so quickly, there was so much going on around him, the Tree quite forgot "
|
| 93 |
-
"to look to himself."
|
| 94 |
-
),
|
| 95 |
-
"audio": "prompts/read_speech_c.wav",
|
| 96 |
-
},
|
| 97 |
-
"read_speech_d": {
|
| 98 |
-
"text": (
|
| 99 |
-
"Suddenly I was back in the old days Before you felt we ought to drift apart. It was "
|
| 100 |
-
"some trick-the way your eyebrows raise."
|
| 101 |
-
),
|
| 102 |
-
"audio": "prompts/read_speech_d.wav",
|
| 103 |
-
},
|
| 104 |
}
|
| 105 |
|
| 106 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -156,7 +133,7 @@ def infer(
|
|
| 156 |
audio_prompt_speaker_b,
|
| 157 |
gen_conversation_input,
|
| 158 |
) -> tuple[np.ndarray, int]:
|
| 159 |
-
# Estimate token limit
|
| 160 |
if len(gen_conversation_input.strip() + text_prompt_speaker_a.strip() + text_prompt_speaker_b.strip()) >= 2000:
|
| 161 |
raise gr.Error("Prompts and conversation too long.", duration=30)
|
| 162 |
|
|
@@ -202,10 +179,7 @@ def _infer(
|
|
| 202 |
audio_tensors = [segment.audio for segment in generated_segments]
|
| 203 |
audio_tensor = torch.cat(audio_tensors, dim=0)
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
# Watermarking ensures transparency, dissuades misuse, and enables traceability.
|
| 207 |
-
# Please be a responsible AI citizen and keep the watermarking in place.
|
| 208 |
-
# If using CSM 1B in another application, use your own private key and keep it secret.
|
| 209 |
audio_tensor, wm_sample_rate = watermark(
|
| 210 |
generator._watermarker, audio_tensor, generator.sample_rate, CSM_1B_HF_WATERMARK
|
| 211 |
)
|
|
|
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
| 10 |
from generator import Segment, load_csm_1b
|
|
|
|
| 11 |
from watermarking import watermark
|
| 12 |
|
| 13 |
+
# Simplified environment variables handling
|
| 14 |
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60))
|
| 15 |
+
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY", "0 0 0").split(" ")))
|
|
|
|
|
|
|
| 16 |
|
| 17 |
SPACE_INTRO_TEXT = """\
|
| 18 |
# Sesame CSM 1B
|
|
|
|
| 21 |
Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).
|
| 22 |
Checkpoint is [hosted on HuggingFace](https://huggingface.co/sesame/csm-1b).
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
---
|
| 25 |
|
| 26 |
"""
|
|
|
|
| 78 |
),
|
| 79 |
"audio": "prompts/read_speech_b.wav",
|
| 80 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 133 |
audio_prompt_speaker_b,
|
| 134 |
gen_conversation_input,
|
| 135 |
) -> tuple[np.ndarray, int]:
|
| 136 |
+
# Estimate token limit
|
| 137 |
if len(gen_conversation_input.strip() + text_prompt_speaker_a.strip() + text_prompt_speaker_b.strip()) >= 2000:
|
| 138 |
raise gr.Error("Prompts and conversation too long.", duration=30)
|
| 139 |
|
|
|
|
| 179 |
audio_tensors = [segment.audio for segment in generated_segments]
|
| 180 |
audio_tensor = torch.cat(audio_tensors, dim=0)
|
| 181 |
|
| 182 |
+
# Watermarking
|
|
|
|
|
|
|
|
|
|
| 183 |
audio_tensor, wm_sample_rate = watermark(
|
| 184 |
generator._watermarker, audio_tensor, generator.sample_rate, CSM_1B_HF_WATERMARK
|
| 185 |
)
|