Spaces:
Runtime error
Runtime error
Commit
·
f467a89
1
Parent(s):
29d2d55
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,32 @@ from PIL import Image
|
|
| 10 |
import re
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
class Prodia:
|
| 15 |
def __init__(self, api_key, base=None):
|
|
@@ -17,19 +43,19 @@ class Prodia:
|
|
| 17 |
self.headers = {
|
| 18 |
"X-Prodia-Key": api_key
|
| 19 |
}
|
| 20 |
-
|
| 21 |
def generate(self, params):
|
| 22 |
response = self._post(f"{self.base}/sd/generate", params)
|
| 23 |
return response.json()
|
| 24 |
-
|
| 25 |
def transform(self, params):
|
| 26 |
response = self._post(f"{self.base}/sd/transform", params)
|
| 27 |
return response.json()
|
| 28 |
-
|
| 29 |
def controlnet(self, params):
|
| 30 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
| 31 |
return response.json()
|
| 32 |
-
|
| 33 |
def get_job(self, job_id):
|
| 34 |
response = self._get(f"{self.base}/job/{job_id}")
|
| 35 |
return response.json()
|
|
@@ -76,7 +102,7 @@ def image_to_base64(image):
|
|
| 76 |
# Convert the image to bytes
|
| 77 |
buffered = BytesIO()
|
| 78 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
| 79 |
-
|
| 80 |
# Encode the bytes to base64
|
| 81 |
img_str = base64.b64encode(buffered.getvalue())
|
| 82 |
|
|
@@ -100,11 +126,11 @@ def get_data(text):
|
|
| 100 |
'negative_prompt': r'Negative prompt: (.*)',
|
| 101 |
'steps': r'Steps: (\d+),',
|
| 102 |
'seed': r'Seed: (\d+),',
|
| 103 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
| 104 |
'model': r'Model:\s*([^\s,]+)',
|
| 105 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
| 106 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
| 107 |
-
|
| 108 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
| 109 |
match = re.search(patterns[key], text)
|
| 110 |
if match:
|
|
@@ -120,18 +146,20 @@ def get_data(text):
|
|
| 120 |
results['h'] = None
|
| 121 |
return results
|
| 122 |
|
|
|
|
| 123 |
def send_to_img2img_def(image):
|
| 124 |
return image
|
| 125 |
|
| 126 |
-
def send_to_txt2img(image):
|
| 127 |
|
|
|
|
| 128 |
result = {tabs: gr.update(selected="t2i")}
|
| 129 |
|
| 130 |
try:
|
| 131 |
text = image.info['parameters']
|
| 132 |
data = get_data(text)
|
| 133 |
result[prompt] = gr.update(value=data['prompt'])
|
| 134 |
-
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
|
|
|
| 135 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
| 136 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
| 137 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
|
@@ -206,59 +234,60 @@ css = """
|
|
| 206 |
with gr.Blocks(css=css) as demo:
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column(scale=6):
|
| 209 |
-
model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
| 210 |
-
|
| 211 |
-
with gr.Column(scale=1):
|
| 212 |
-
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
|
| 213 |
|
| 214 |
with gr.Tabs() as tabs:
|
| 215 |
with gr.Tab("txt2img", id='t2i'):
|
| 216 |
with gr.Row():
|
| 217 |
with gr.Column(scale=6, min_width=600):
|
| 218 |
-
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
| 219 |
-
|
|
|
|
|
|
|
| 220 |
with gr.Column():
|
| 221 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 222 |
-
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column(scale=3):
|
| 225 |
with gr.Tab("Generation"):
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column(scale=1):
|
| 228 |
-
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
| 229 |
-
|
|
|
|
| 230 |
with gr.Column(scale=1):
|
| 231 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 232 |
-
|
| 233 |
with gr.Row():
|
| 234 |
with gr.Column(scale=1):
|
| 235 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 236 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 237 |
-
|
| 238 |
with gr.Column(scale=1):
|
| 239 |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 240 |
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 241 |
-
|
| 242 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=
|
| 243 |
seed = gr.Number(label="Seed", value=-1)
|
| 244 |
|
| 245 |
with gr.Column(scale=2):
|
| 246 |
-
image_output = gr.Image(show_label=False, type="filepath")
|
| 247 |
send_to_img2img = gr.Button(value="Send to img2img")
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
|
| 252 |
seed], outputs=image_output, concurrency_limit=64)
|
| 253 |
-
|
| 254 |
with gr.Tab("img2img", id='i2i'):
|
| 255 |
with gr.Row():
|
| 256 |
with gr.Column(scale=6, min_width=600):
|
| 257 |
-
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
| 258 |
-
|
|
|
|
|
|
|
| 259 |
with gr.Column():
|
| 260 |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 261 |
-
|
| 262 |
with gr.Row():
|
| 263 |
with gr.Column(scale=3):
|
| 264 |
with gr.Tab("Generation"):
|
|
@@ -266,8 +295,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 266 |
|
| 267 |
with gr.Row():
|
| 268 |
with gr.Column(scale=1):
|
| 269 |
-
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
| 270 |
-
|
|
|
|
| 271 |
with gr.Column(scale=1):
|
| 272 |
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 273 |
|
|
@@ -275,32 +305,33 @@ with gr.Blocks(css=css) as demo:
|
|
| 275 |
with gr.Column(scale=1):
|
| 276 |
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 277 |
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 278 |
-
|
| 279 |
with gr.Column(scale=1):
|
| 280 |
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 281 |
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 282 |
-
|
| 283 |
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
| 284 |
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
| 285 |
i2i_seed = gr.Number(label="Seed", value=-1)
|
| 286 |
|
| 287 |
with gr.Column(scale=2):
|
| 288 |
-
i2i_image_output = gr.Image(show_label=False, type="filepath")
|
| 289 |
-
|
| 290 |
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
| 291 |
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
| 292 |
i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
|
| 293 |
send_to_img2img.click(send_to_img2img_def, inputs=image_output, outputs=i2i_image_input)
|
|
|
|
| 294 |
with gr.Tab("PNG Info"):
|
| 295 |
def plaintext_to_html(text, classname=None):
|
| 296 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
| 297 |
-
|
| 298 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
| 299 |
-
|
| 300 |
-
|
| 301 |
def get_exif_data(image):
|
| 302 |
items = image.info
|
| 303 |
-
|
| 304 |
info = ''
|
| 305 |
for key, text in items.items():
|
| 306 |
info += f"""
|
|
@@ -308,26 +339,66 @@ with gr.Blocks(css=css) as demo:
|
|
| 308 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
| 309 |
<p>{plaintext_to_html(str(text))}</p>
|
| 310 |
</div>
|
| 311 |
-
""".strip()+"\n"
|
| 312 |
-
|
| 313 |
if len(info) == 0:
|
| 314 |
message = "Nothing found in the image."
|
| 315 |
info = f"<div><p>{message}<p></div>"
|
| 316 |
-
|
| 317 |
return info
|
| 318 |
-
|
|
|
|
| 319 |
with gr.Row():
|
| 320 |
with gr.Column():
|
| 321 |
image_input = gr.Image(type="pil")
|
| 322 |
-
|
| 323 |
with gr.Column():
|
| 324 |
exif_output = gr.HTML(label="EXIF Data")
|
| 325 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
| 326 |
-
|
| 327 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
| 328 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
|
| 329 |
steps, seed, model, sampler,
|
| 330 |
width, height, cfg_scale],
|
| 331 |
concurrency_limit=64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
|
|
|
|
| 10 |
import re
|
| 11 |
|
| 12 |
|
| 13 |
+
def query(payload, model):
|
| 14 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 15 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 16 |
+
url = "https://api-inference.huggingface.co/models/"
|
| 17 |
+
API_URL = f"{url}{model}"
|
| 18 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 19 |
+
return response.content
|
| 20 |
+
|
| 21 |
+
def hf_inference(prompt, negative, model, steps, sampler, guidance, width, height, seed):
|
| 22 |
+
image_bytes = query(payload={
|
| 23 |
+
"inputs": f"{prompt}",
|
| 24 |
+
"parameters": {
|
| 25 |
+
"negative_prompt": f"{negative}",
|
| 26 |
+
"num_inference_steps": steps,
|
| 27 |
+
"guidance_scale": guidance,
|
| 28 |
+
"width": width, "height": height,
|
| 29 |
+
"seed": seed,
|
| 30 |
+
},
|
| 31 |
+
}, model=model)
|
| 32 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 33 |
+
return image
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
|
| 40 |
class Prodia:
|
| 41 |
def __init__(self, api_key, base=None):
|
|
|
|
| 43 |
self.headers = {
|
| 44 |
"X-Prodia-Key": api_key
|
| 45 |
}
|
| 46 |
+
|
| 47 |
def generate(self, params):
|
| 48 |
response = self._post(f"{self.base}/sd/generate", params)
|
| 49 |
return response.json()
|
| 50 |
+
|
| 51 |
def transform(self, params):
|
| 52 |
response = self._post(f"{self.base}/sd/transform", params)
|
| 53 |
return response.json()
|
| 54 |
+
|
| 55 |
def controlnet(self, params):
|
| 56 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
| 57 |
return response.json()
|
| 58 |
+
|
| 59 |
def get_job(self, job_id):
|
| 60 |
response = self._get(f"{self.base}/job/{job_id}")
|
| 61 |
return response.json()
|
|
|
|
| 102 |
# Convert the image to bytes
|
| 103 |
buffered = BytesIO()
|
| 104 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
| 105 |
+
|
| 106 |
# Encode the bytes to base64
|
| 107 |
img_str = base64.b64encode(buffered.getvalue())
|
| 108 |
|
|
|
|
| 126 |
'negative_prompt': r'Negative prompt: (.*)',
|
| 127 |
'steps': r'Steps: (\d+),',
|
| 128 |
'seed': r'Seed: (\d+),',
|
| 129 |
+
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
| 130 |
'model': r'Model:\s*([^\s,]+)',
|
| 131 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
| 132 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
| 133 |
+
}
|
| 134 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
| 135 |
match = re.search(patterns[key], text)
|
| 136 |
if match:
|
|
|
|
| 146 |
results['h'] = None
|
| 147 |
return results
|
| 148 |
|
| 149 |
+
|
| 150 |
def send_to_img2img_def(image):
|
| 151 |
return image
|
| 152 |
|
|
|
|
| 153 |
|
| 154 |
+
def send_to_txt2img(image):
|
| 155 |
result = {tabs: gr.update(selected="t2i")}
|
| 156 |
|
| 157 |
try:
|
| 158 |
text = image.info['parameters']
|
| 159 |
data = get_data(text)
|
| 160 |
result[prompt] = gr.update(value=data['prompt'])
|
| 161 |
+
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
| 162 |
+
'negative_prompt'] is not None else gr.update()
|
| 163 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
| 164 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
| 165 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
|
|
|
| 234 |
with gr.Blocks(css=css) as demo:
|
| 235 |
with gr.Row():
|
| 236 |
with gr.Column(scale=6):
|
| 237 |
+
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
| 238 |
+
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
|
|
|
|
|
|
|
| 239 |
|
| 240 |
with gr.Tabs() as tabs:
|
| 241 |
with gr.Tab("txt2img", id='t2i'):
|
| 242 |
with gr.Row():
|
| 243 |
with gr.Column(scale=6, min_width=600):
|
| 244 |
+
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
| 245 |
+
placeholder="Prompt", show_label=False, lines=3)
|
| 246 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
| 247 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
| 248 |
with gr.Column():
|
| 249 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 250 |
+
|
| 251 |
with gr.Row():
|
| 252 |
with gr.Column(scale=3):
|
| 253 |
with gr.Tab("Generation"):
|
| 254 |
with gr.Row():
|
| 255 |
with gr.Column(scale=1):
|
| 256 |
+
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
| 257 |
+
choices=prodia_client.list_samplers())
|
| 258 |
+
|
| 259 |
with gr.Column(scale=1):
|
| 260 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 261 |
+
|
| 262 |
with gr.Row():
|
| 263 |
with gr.Column(scale=1):
|
| 264 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 265 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 266 |
+
|
| 267 |
with gr.Column(scale=1):
|
| 268 |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 269 |
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 270 |
+
|
| 271 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
|
| 272 |
seed = gr.Number(label="Seed", value=-1)
|
| 273 |
|
| 274 |
with gr.Column(scale=2):
|
| 275 |
+
image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
| 276 |
send_to_img2img = gr.Button(value="Send to img2img")
|
| 277 |
|
|
|
|
|
|
|
| 278 |
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
|
| 279 |
seed], outputs=image_output, concurrency_limit=64)
|
| 280 |
+
|
| 281 |
with gr.Tab("img2img", id='i2i'):
|
| 282 |
with gr.Row():
|
| 283 |
with gr.Column(scale=6, min_width=600):
|
| 284 |
+
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
| 285 |
+
placeholder="Prompt", show_label=False, lines=3)
|
| 286 |
+
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
| 287 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
| 288 |
with gr.Column():
|
| 289 |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 290 |
+
|
| 291 |
with gr.Row():
|
| 292 |
with gr.Column(scale=3):
|
| 293 |
with gr.Tab("Generation"):
|
|
|
|
| 295 |
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Column(scale=1):
|
| 298 |
+
i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
| 299 |
+
choices=prodia_client.list_samplers())
|
| 300 |
+
|
| 301 |
with gr.Column(scale=1):
|
| 302 |
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 303 |
|
|
|
|
| 305 |
with gr.Column(scale=1):
|
| 306 |
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 307 |
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 308 |
+
|
| 309 |
with gr.Column(scale=1):
|
| 310 |
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 311 |
i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 312 |
+
|
| 313 |
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
| 314 |
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
| 315 |
i2i_seed = gr.Number(label="Seed", value=-1)
|
| 316 |
|
| 317 |
with gr.Column(scale=2):
|
| 318 |
+
i2i_image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
| 319 |
+
|
| 320 |
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
|
| 321 |
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
|
| 322 |
i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
|
| 323 |
send_to_img2img.click(send_to_img2img_def, inputs=image_output, outputs=i2i_image_input)
|
| 324 |
+
|
| 325 |
with gr.Tab("PNG Info"):
|
| 326 |
def plaintext_to_html(text, classname=None):
|
| 327 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
| 328 |
+
|
| 329 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
| 330 |
+
|
| 331 |
+
|
| 332 |
def get_exif_data(image):
|
| 333 |
items = image.info
|
| 334 |
+
|
| 335 |
info = ''
|
| 336 |
for key, text in items.items():
|
| 337 |
info += f"""
|
|
|
|
| 339 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
| 340 |
<p>{plaintext_to_html(str(text))}</p>
|
| 341 |
</div>
|
| 342 |
+
""".strip() + "\n"
|
| 343 |
+
|
| 344 |
if len(info) == 0:
|
| 345 |
message = "Nothing found in the image."
|
| 346 |
info = f"<div><p>{message}<p></div>"
|
| 347 |
+
|
| 348 |
return info
|
| 349 |
+
|
| 350 |
+
|
| 351 |
with gr.Row():
|
| 352 |
with gr.Column():
|
| 353 |
image_input = gr.Image(type="pil")
|
| 354 |
+
|
| 355 |
with gr.Column():
|
| 356 |
exif_output = gr.HTML(label="EXIF Data")
|
| 357 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
| 358 |
+
|
| 359 |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
| 360 |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
|
| 361 |
steps, seed, model, sampler,
|
| 362 |
width, height, cfg_scale],
|
| 363 |
concurrency_limit=64)
|
| 364 |
+
with gr.Tab("HuggingFace Inference"):
|
| 365 |
+
with gr.Row():
|
| 366 |
+
hf_model = gr.Dropdown(label="HuggingFace checkpoint", choices=["runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "dataautogpt3/OpenDalleV1.1", "CompVis/stable-diffusion-v1-4", "playgroundai/playground-v2-1024px-aesthetic", "prompthero/openjourney", "openskyml/dreamdrop-v1", "SG161222/Realistic_Vision_V1.4", "digiplay/AbsoluteReality_v1.8.1", "openskyml/dalle-3-xl", "Lykon/dreamshaper-7", "Pclanglais/Mickey-1928"], value="runwayml/stable-diffusion-v1-5", allow_custom_value=False, interactive=True)
|
| 367 |
+
with gr.Row():
|
| 368 |
+
with gr.Column(scale=6, min_width=600):
|
| 369 |
+
hf_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
| 370 |
+
placeholder="Prompt", show_label=False, lines=3)
|
| 371 |
+
hd_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
| 372 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
| 373 |
+
with gr.Column():
|
| 374 |
+
hf_text_button = gr.Button("Generate with HF", variant='primary', elem_id="generate")
|
| 375 |
+
|
| 376 |
+
with gr.Row():
|
| 377 |
+
with gr.Column(scale=3):
|
| 378 |
+
with gr.Tab("Generation"):
|
| 379 |
+
with gr.Row():
|
| 380 |
+
|
| 381 |
+
with gr.Column(scale=1):
|
| 382 |
+
hf_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 383 |
+
|
| 384 |
+
with gr.Row():
|
| 385 |
+
with gr.Column(scale=1):
|
| 386 |
+
hf_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 387 |
+
hf_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 388 |
+
|
| 389 |
+
with gr.Column(scale=1):
|
| 390 |
+
hf_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 391 |
+
hf_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 392 |
+
|
| 393 |
+
hf_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=8, step=1)
|
| 394 |
+
hf_seed = gr.Number(label="Seed", value=-1)
|
| 395 |
+
|
| 396 |
+
with gr.Column(scale=2):
|
| 397 |
+
hf_image_output = gr.Image(show_label=False, type="filepath", interactive=False)
|
| 398 |
+
#hf_send_to_img2img = gr.Button(value="Send to img2img")
|
| 399 |
+
|
| 400 |
+
hf_text_button.click(hf_inference, inputs=[hf_prompt, hf_negative_prompt, hf_model, hf_steps, hf_sampler, hf_cfg_scale, hf_width, hf_height,
|
| 401 |
+
hf_seed], outputs=hf_image_output, concurrency_limit=64)
|
| 402 |
+
|
| 403 |
|
| 404 |
demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
|