Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -74,13 +74,25 @@ class Prodia:
|
|
| 74 |
response = self._post(f"{self.base}/sd/generate", params)
|
| 75 |
return response.json()
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def transform(self, params):
|
| 78 |
response = self._post(f"{self.base}/sd/transform", params)
|
| 79 |
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
def controlnet(self, params):
|
| 82 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
| 83 |
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
def get_job(self, job_id):
|
| 86 |
response = self._get(f"{self.base}/job/{job_id}")
|
|
@@ -98,10 +110,18 @@ class Prodia:
|
|
| 98 |
def list_models(self):
|
| 99 |
response = self._get(f"{self.base}/sd/models")
|
| 100 |
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def list_samplers(self):
|
| 103 |
response = self._get(f"{self.base}/sd/samplers")
|
| 104 |
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
def _post(self, url, params):
|
| 107 |
headers = {
|
|
@@ -207,11 +227,17 @@ def send_to_txt2img(image):
|
|
| 207 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
| 208 |
model_list = prodia_client.list_models()
|
| 209 |
model_names = {}
|
|
|
|
|
|
|
| 210 |
|
| 211 |
for model_name in model_list:
|
| 212 |
name_without_ext = remove_id_and_ext(model_name)
|
| 213 |
model_names[name_without_ext] = model_name
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, upscale, seed, progress=gr.Progress()):
|
| 217 |
progress(0, desc="Starting")
|
|
@@ -234,6 +260,25 @@ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, he
|
|
| 234 |
progress(0.99, desc="Sending image")
|
| 235 |
return [job["imageUrl"]], job["imageUrl"]
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, upscale, seed, progress=gr.Progress()):
|
| 239 |
progress(0, desc="Starting")
|
|
@@ -262,6 +307,36 @@ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampl
|
|
| 262 |
time.sleep(0.5)
|
| 263 |
return [job["imageUrl"]], job["imageUrl"]
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
css = """
|
| 267 |
#generate {
|
|
@@ -422,6 +497,99 @@ with gr.Blocks(css=css) as demo:
|
|
| 422 |
send_to_png.click(send_to_img2img_def, inputs=past_url, outputs=image_input)
|
| 423 |
send_to_img2img_png.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input)
|
| 424 |
send_to_png_i2i.click(send_to_img2img_def, inputs=i2i_past_url, outputs=image_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
with gr.Tab("HuggingFace Inference"):
|
| 426 |
with gr.Row():
|
| 427 |
gr.Markdown("Add your model from HF.co, enter model ID.")
|
|
|
|
| 74 |
response = self._post(f"{self.base}/sd/generate", params)
|
| 75 |
return response.json()
|
| 76 |
|
| 77 |
+
def xl_generate(self, params):
|
| 78 |
+
response = self._post(f"{self.base}/sdxl/generate", params)
|
| 79 |
+
return response.json()
|
| 80 |
+
|
| 81 |
def transform(self, params):
|
| 82 |
response = self._post(f"{self.base}/sd/transform", params)
|
| 83 |
return response.json()
|
| 84 |
+
|
| 85 |
+
def xl_transform(self, params):
|
| 86 |
+
response = self._post(f"{self.base}/sdxl/transform", params)
|
| 87 |
+
return response.json()
|
| 88 |
|
| 89 |
def controlnet(self, params):
|
| 90 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
| 91 |
return response.json()
|
| 92 |
+
|
| 93 |
+
def xl_controlnet(self, params):
|
| 94 |
+
response = self._post(f"{self.base}/sdxl/controlnet", params)
|
| 95 |
+
return response.json()
|
| 96 |
|
| 97 |
def get_job(self, job_id):
|
| 98 |
response = self._get(f"{self.base}/job/{job_id}")
|
|
|
|
| 110 |
def list_models(self):
|
| 111 |
response = self._get(f"{self.base}/sd/models")
|
| 112 |
return response.json()
|
| 113 |
+
|
| 114 |
+
def xl_list_models(self):
|
| 115 |
+
response = self._get(f"{self.base}/sdxl/models")
|
| 116 |
+
return response.json()
|
| 117 |
|
| 118 |
def list_samplers(self):
|
| 119 |
response = self._get(f"{self.base}/sd/samplers")
|
| 120 |
return response.json()
|
| 121 |
+
|
| 122 |
+
def xl_list_samplers(self):
|
| 123 |
+
response = self._get(f"{self.base}/sdxl/samplers")
|
| 124 |
+
return response.json()
|
| 125 |
|
| 126 |
def _post(self, url, params):
|
| 127 |
headers = {
|
|
|
|
| 227 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
| 228 |
model_list = prodia_client.list_models()
|
| 229 |
model_names = {}
|
| 230 |
+
xl_model_list = prodia_client.xl_list_models()
|
| 231 |
+
xl_model_names = {}
|
| 232 |
|
| 233 |
for model_name in model_list:
|
| 234 |
name_without_ext = remove_id_and_ext(model_name)
|
| 235 |
model_names[name_without_ext] = model_name
|
| 236 |
|
| 237 |
+
for xl_model_name in xl_model_list:
|
| 238 |
+
xl_name_without_ext = remove_id_and_ext(xl_model_name)
|
| 239 |
+
xl_model_names[xl_name_without_ext] = xl_model_name
|
| 240 |
+
|
| 241 |
|
| 242 |
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, upscale, seed, progress=gr.Progress()):
|
| 243 |
progress(0, desc="Starting")
|
|
|
|
| 260 |
progress(0.99, desc="Sending image")
|
| 261 |
return [job["imageUrl"]], job["imageUrl"]
|
| 262 |
|
| 263 |
+
def xl_txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()):
|
| 264 |
+
progress(0, desc="Starting")
|
| 265 |
+
time.sleep(2.5)
|
| 266 |
+
progress(0.25, desc="Generating")
|
| 267 |
+
result = prodia_client.generate({
|
| 268 |
+
"prompt": prompt,
|
| 269 |
+
"negative_prompt": negative_prompt,
|
| 270 |
+
"model": model,
|
| 271 |
+
"steps": steps,
|
| 272 |
+
"sampler": sampler,
|
| 273 |
+
"cfg_scale": cfg_scale,
|
| 274 |
+
"width": width,
|
| 275 |
+
"height": height,
|
| 276 |
+
"seed": seed
|
| 277 |
+
})
|
| 278 |
+
progress(0.75, desc="Opening image")
|
| 279 |
+
job = prodia_client.wait(result)
|
| 280 |
+
progress(0.99, desc="Sending image")
|
| 281 |
+
return [job["imageUrl"]], job["imageUrl"]
|
| 282 |
|
| 283 |
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, upscale, seed, progress=gr.Progress()):
|
| 284 |
progress(0, desc="Starting")
|
|
|
|
| 307 |
time.sleep(0.5)
|
| 308 |
return [job["imageUrl"]], job["imageUrl"]
|
| 309 |
|
| 310 |
+
def xl_img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, progress=gr.Progress()):
|
| 311 |
+
progress(0, desc="Starting")
|
| 312 |
+
time.sleep(1.5)
|
| 313 |
+
progress(0.10, desc="Uploading input image")
|
| 314 |
+
time.sleep(1.5)
|
| 315 |
+
progress(0.25, desc="Generating")
|
| 316 |
+
result = prodia_client.transform({
|
| 317 |
+
"imageData": image_to_base64(input_image),
|
| 318 |
+
"denoising_strength": denoising,
|
| 319 |
+
"prompt": prompt,
|
| 320 |
+
"negative_prompt": negative_prompt,
|
| 321 |
+
"model": model,
|
| 322 |
+
"steps": steps,
|
| 323 |
+
"sampler": sampler,
|
| 324 |
+
"cfg_scale": cfg_scale,
|
| 325 |
+
"width": width,
|
| 326 |
+
"height": height,
|
| 327 |
+
"seed": seed
|
| 328 |
+
})
|
| 329 |
+
progress(0.75, desc="Opening image")
|
| 330 |
+
|
| 331 |
+
job = prodia_client.wait(result)
|
| 332 |
+
progress(0.99, desc="Sending image")
|
| 333 |
+
time.sleep(0.5)
|
| 334 |
+
return [job["imageUrl"]], job["imageUrl"]
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
|
| 340 |
|
| 341 |
css = """
|
| 342 |
#generate {
|
|
|
|
| 497 |
send_to_png.click(send_to_img2img_def, inputs=past_url, outputs=image_input)
|
| 498 |
send_to_img2img_png.click(send_to_img2img_def, inputs=past_url, outputs=i2i_image_input)
|
| 499 |
send_to_png_i2i.click(send_to_img2img_def, inputs=i2i_past_url, outputs=image_input)
|
| 500 |
+
with gr.Tab("XL Inference"):
|
| 501 |
+
with gr.Row():
|
| 502 |
+
with gr.Column(scale=6):
|
| 503 |
+
xl_model = gr.Dropdown(interactive=True, show_label=True,
|
| 504 |
+
label="Stable Diffusion XL Checkpoint", choices=prodia_client.xl_list_models())
|
| 505 |
+
|
| 506 |
+
with gr.Tab("txt2img"):
|
| 507 |
+
with gr.Row():
|
| 508 |
+
with gr.Column(scale=6, min_width=600):
|
| 509 |
+
xl_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3, scale=3)
|
| 510 |
+
xl_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, scale=1,
|
| 511 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation")
|
| 512 |
+
with gr.Column():
|
| 513 |
+
xl_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 514 |
+
|
| 515 |
+
with gr.Row():
|
| 516 |
+
with gr.Column(scale=3):
|
| 517 |
+
with gr.Tab("Generation"):
|
| 518 |
+
with gr.Row():
|
| 519 |
+
with gr.Column(scale=1):
|
| 520 |
+
xl_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
| 521 |
+
choices=prodia_client.xl_list_samplers())
|
| 522 |
+
|
| 523 |
+
with gr.Column(scale=1):
|
| 524 |
+
xl_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 525 |
+
|
| 526 |
+
with gr.Row():
|
| 527 |
+
with gr.Column(scale=1):
|
| 528 |
+
xl_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 529 |
+
xl_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 530 |
+
|
| 531 |
+
with gr.Column(scale=1):
|
| 532 |
+
xl_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 533 |
+
xl_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 534 |
+
|
| 535 |
+
xl_cfg_scale = gr.Slider(label="CFG Scale", minimum=0.1, maximum=20, value=8, step=0.1)
|
| 536 |
+
xl_seed = gr.Number(label="Seed", value=-1)
|
| 537 |
+
|
| 538 |
+
with gr.Column(scale=2):
|
| 539 |
+
xl_image_output = gr.Gallery(show_label=False, rows=2, preview=True)
|
| 540 |
+
xl_send_to_img2img = gr.Button(value="Send OUTPUT IMAGE to img2img")
|
| 541 |
+
xl_send_to_png = gr.Button(value="Send OUTPUT IMAGE to PNG Info")
|
| 542 |
+
xl_past_url = gr.Textbox(visible=False, interactive=False)
|
| 543 |
+
|
| 544 |
+
xl_text_button.click(xl_txt2img, inputs=[xl_prompt, xl_negative_prompt, xl_model, xl_steps, xl_sampler, xl_cfg_scale, xl_width, xl_height,
|
| 545 |
+
xl_seed], outputs=[xl_image_output, xl_past_url], concurrency_limit=64)
|
| 546 |
+
|
| 547 |
+
with gr.Tab("img2img"):
|
| 548 |
+
with gr.Row():
|
| 549 |
+
with gr.Column(scale=6, min_width=600):
|
| 550 |
+
xl_i2i_prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3, scale=3)
|
| 551 |
+
xl_i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, scale=1,
|
| 552 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation")
|
| 553 |
+
with gr.Column():
|
| 554 |
+
xl_i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 555 |
+
|
| 556 |
+
with gr.Row():
|
| 557 |
+
with gr.Column(scale=3):
|
| 558 |
+
with gr.Tab("Generation"):
|
| 559 |
+
xl_i2i_image_input = gr.Image(type="pil", interactive=True)
|
| 560 |
+
|
| 561 |
+
with gr.Row():
|
| 562 |
+
with gr.Column(scale=1):
|
| 563 |
+
xl_i2i_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
|
| 564 |
+
choices=prodia_client.xl_list_samplers())
|
| 565 |
+
|
| 566 |
+
with gr.Column(scale=1):
|
| 567 |
+
xl_i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
|
| 568 |
+
with gr.Row():
|
| 569 |
+
with gr.Column(scale=1):
|
| 570 |
+
xl_i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
| 571 |
+
xl_i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
| 572 |
+
|
| 573 |
+
with gr.Column(scale=1):
|
| 574 |
+
xl_i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
| 575 |
+
xl_i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
| 576 |
+
|
| 577 |
+
xl_i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=0.1, maximum=20, value=7, step=0.1)
|
| 578 |
+
xl_i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
| 579 |
+
xl_i2i_seed = gr.Number(label="Seed", value=-1)
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
with gr.Column(scale=2):
|
| 583 |
+
xl_i2i_image_output = gr.Gallery(show_label=False, rows=2, preview=True)
|
| 584 |
+
xl_send_to_png_i2i = gr.Button(value="Send INPUT IMAGE to PNG Info")
|
| 585 |
+
xl_i2i_past_url = gr.Textbox(visible=False, interactive=False)
|
| 586 |
+
|
| 587 |
+
xl_i2i_text_button.click(xl_img2img, inputs=[xl_i2i_image_input, xl_i2i_denoising, xl_i2i_prompt, xl_i2i_negative_prompt,
|
| 588 |
+
xl_model, xl_i2i_steps, xl_i2i_sampler, xl_i2i_cfg_scale, xl_i2i_width, xl_i2i_height,
|
| 589 |
+
xl_i2i_seed], outputs=[xl_i2i_image_output, xl_i2i_past_url], concurrency_limit=64)
|
| 590 |
+
xl_send_to_img2img.click(send_to_img2img_def, inputs=xl_past_url, outputs=xl_i2i_image_input)
|
| 591 |
+
xl_send_to_png.click(send_to_img2img_def, inputs=xl_past_url, outputs=image_input)
|
| 592 |
+
xl_send_to_png_i2i.click(send_to_img2img_def, inputs=xl_i2i_past_url, outputs=image_input)
|
| 593 |
with gr.Tab("HuggingFace Inference"):
|
| 594 |
with gr.Row():
|
| 595 |
gr.Markdown("Add your model from HF.co, enter model ID.")
|