Spaces:
Runtime error
Runtime error
add adaptive model
Browse files- README.md +2 -1
- app.py +1 -1
- config.py +1 -1
- src/pipeline.py +26 -1
- weights/controlnet_adaptive/config.json +57 -0
README.md
CHANGED
|
@@ -22,5 +22,6 @@ a handsome man relaxing in a chair, shirt widely unbuttoned, eyes closed, close
|
|
| 22 |
|
| 23 |
- [x] научиться записывать демку (научился Screencastify - поставил плагин в гугл)
|
| 24 |
- [ ] добавить caption.csv в data/
|
| 25 |
-
- [ ]
|
|
|
|
| 26 |
- [ ] настроить запуск в hugging space
|
|
|
|
| 22 |
|
| 23 |
- [x] научиться записывать демку (научился Screencastify - поставил плагин в гугл)
|
| 24 |
- [ ] добавить caption.csv в data/
|
| 25 |
+
- [ ] добавить adaptive resize
|
| 26 |
+
- [ ] прокинуть параметры в демке (seed и т д), + adaptive resize размеры
|
| 27 |
- [ ] настроить запуск в hugging space
|
app.py
CHANGED
|
@@ -58,7 +58,7 @@ with block:
|
|
| 58 |
|
| 59 |
<p> This repo based on Unet from <a style="text-decoration: underline;" href="https://huggingface.co/spaces/wildoctopus/cloth-segmentation">cloth-segmentation</a>
|
| 60 |
It's uses pre-trained U2NET to extract Upper body(red), Lower body(green), Full body(blue) masks, and then
|
| 61 |
-
run StableDiffusionXLControlNetPipeline with trained
|
| 62 |
</p>
|
| 63 |
""")
|
| 64 |
|
|
|
|
| 58 |
|
| 59 |
<p> This repo based on Unet from <a style="text-decoration: underline;" href="https://huggingface.co/spaces/wildoctopus/cloth-segmentation">cloth-segmentation</a>
|
| 60 |
It's uses pre-trained U2NET to extract Upper body(red), Lower body(green), Full body(blue) masks, and then
|
| 61 |
+
run StableDiffusionXLControlNetPipeline with trained controlnet_baseline to generate image conditioned on this masks.
|
| 62 |
</p>
|
| 63 |
""")
|
| 64 |
|
config.py
CHANGED
|
@@ -15,6 +15,6 @@ class PipelineConfig:
|
|
| 15 |
|
| 16 |
vae_path: str = 'madebyollin/sdxl-vae-fp16-fix'
|
| 17 |
|
| 18 |
-
controlnet_path: str = os.path.join(weights_path, '
|
| 19 |
|
| 20 |
segmentation_model_path: str = os.path.join(weights_path, 'cloth_segm.pth')
|
|
|
|
| 15 |
|
| 16 |
vae_path: str = 'madebyollin/sdxl-vae-fp16-fix'
|
| 17 |
|
| 18 |
+
controlnet_path: str = os.path.join(weights_path, 'controlnet_adaptive')
|
| 19 |
|
| 20 |
segmentation_model_path: str = os.path.join(weights_path, 'cloth_segm.pth')
|
src/pipeline.py
CHANGED
|
@@ -49,7 +49,10 @@ class FashionPipeline:
|
|
| 49 |
|
| 50 |
# extract segmentation mask
|
| 51 |
segm_mask = generate_mask(control_image, self.segmentation_model, device=self.device)
|
| 52 |
-
control_mask = self.
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
segm_mask = self.color_segmentation_mask(segm_mask)
|
| 55 |
|
|
@@ -81,6 +84,28 @@ class FashionPipeline:
|
|
| 81 |
ch3 = (segm_mask == 3) * 255 # Full body(blue).
|
| 82 |
return Image.fromarray(np.stack([ch1, ch2, ch3], axis=-1).astype('uint8'), 'RGB')
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def __init_pipeline(self):
|
| 85 |
"""Init models and SDXL pipeline."""
|
| 86 |
self.segmentation_model = load_seg_model(
|
|
|
|
| 49 |
|
| 50 |
# extract segmentation mask
|
| 51 |
segm_mask = generate_mask(control_image, self.segmentation_model, device=self.device)
|
| 52 |
+
control_mask = self.adaptive_resize(
|
| 53 |
+
self.create_control_image(segm_mask),
|
| 54 |
+
target_image_size=resolution,
|
| 55 |
+
)
|
| 56 |
|
| 57 |
segm_mask = self.color_segmentation_mask(segm_mask)
|
| 58 |
|
|
|
|
| 84 |
ch3 = (segm_mask == 3) * 255 # Full body(blue).
|
| 85 |
return Image.fromarray(np.stack([ch1, ch2, ch3], axis=-1).astype('uint8'), 'RGB')
|
| 86 |
|
| 87 |
+
def adaptive_resize(self, image, target_image_size=512, max_image_size=768, divisible=64):
|
| 88 |
+
|
| 89 |
+
assert target_image_size % divisible == 0
|
| 90 |
+
assert max_image_size % divisible == 0
|
| 91 |
+
assert max_image_size >= target_image_size
|
| 92 |
+
|
| 93 |
+
width, height = image.size
|
| 94 |
+
aspect_ratio = width / height
|
| 95 |
+
|
| 96 |
+
if height > width:
|
| 97 |
+
new_width = target_image_size
|
| 98 |
+
new_height = new_width / aspect_ratio
|
| 99 |
+
new_height = (new_height // divisible) * divisible
|
| 100 |
+
new_height = int(min(new_height, max_image_size))
|
| 101 |
+
else:
|
| 102 |
+
new_height = target_image_size
|
| 103 |
+
new_width = new_height / aspect_ratio
|
| 104 |
+
new_width = (new_width // divisible) * divisible
|
| 105 |
+
new_width = int(min(new_width, max_image_size))
|
| 106 |
+
|
| 107 |
+
return image.resize((new_width, new_height))
|
| 108 |
+
|
| 109 |
def __init_pipeline(self):
|
| 110 |
"""Init models and SDXL pipeline."""
|
| 111 |
self.segmentation_model = load_seg_model(
|
weights/controlnet_adaptive/config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "ControlNetModel",
|
| 3 |
+
"_diffusers_version": "0.25.0.dev0",
|
| 4 |
+
"act_fn": "silu",
|
| 5 |
+
"addition_embed_type": "text_time",
|
| 6 |
+
"addition_embed_type_num_heads": 64,
|
| 7 |
+
"addition_time_embed_dim": 256,
|
| 8 |
+
"attention_head_dim": [
|
| 9 |
+
5,
|
| 10 |
+
10,
|
| 11 |
+
20
|
| 12 |
+
],
|
| 13 |
+
"block_out_channels": [
|
| 14 |
+
320,
|
| 15 |
+
640,
|
| 16 |
+
1280
|
| 17 |
+
],
|
| 18 |
+
"class_embed_type": null,
|
| 19 |
+
"conditioning_channels": 3,
|
| 20 |
+
"conditioning_embedding_out_channels": [
|
| 21 |
+
16,
|
| 22 |
+
32,
|
| 23 |
+
96,
|
| 24 |
+
256
|
| 25 |
+
],
|
| 26 |
+
"controlnet_conditioning_channel_order": "rgb",
|
| 27 |
+
"cross_attention_dim": 2048,
|
| 28 |
+
"down_block_types": [
|
| 29 |
+
"DownBlock2D",
|
| 30 |
+
"CrossAttnDownBlock2D",
|
| 31 |
+
"CrossAttnDownBlock2D"
|
| 32 |
+
],
|
| 33 |
+
"downsample_padding": 1,
|
| 34 |
+
"encoder_hid_dim": null,
|
| 35 |
+
"encoder_hid_dim_type": null,
|
| 36 |
+
"flip_sin_to_cos": true,
|
| 37 |
+
"freq_shift": 0,
|
| 38 |
+
"global_pool_conditions": false,
|
| 39 |
+
"in_channels": 4,
|
| 40 |
+
"layers_per_block": 2,
|
| 41 |
+
"mid_block_scale_factor": 1,
|
| 42 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
| 43 |
+
"norm_eps": 1e-05,
|
| 44 |
+
"norm_num_groups": 32,
|
| 45 |
+
"num_attention_heads": null,
|
| 46 |
+
"num_class_embeds": null,
|
| 47 |
+
"only_cross_attention": false,
|
| 48 |
+
"projection_class_embeddings_input_dim": 2816,
|
| 49 |
+
"resnet_time_scale_shift": "default",
|
| 50 |
+
"transformer_layers_per_block": [
|
| 51 |
+
1,
|
| 52 |
+
2,
|
| 53 |
+
10
|
| 54 |
+
],
|
| 55 |
+
"upcast_attention": null,
|
| 56 |
+
"use_linear_projection": true
|
| 57 |
+
}
|