Spaces:
Sleeping
Sleeping
""" | |
* Tag2Text | |
* Written by Xinyu Huang | |
""" | |
import json | |
import warnings | |
import numpy as np | |
import torch | |
from models.bert import BertConfig | |
from models.bert import BertLMHeadModel | |
from models.bert import BertModel | |
from models.swin_transformer import SwinTransformer | |
from models.utils import * | |
from models.vit import VisionTransformer | |
from torch import nn | |
warnings.filterwarnings("ignore") | |
class Tag2Text_Caption(nn.Module): | |
def __init__( | |
self, | |
med_config=f"{CONFIG_PATH}/configs/med_config.json", | |
image_size=384, | |
vit="base", | |
vit_grad_ckpt=False, | |
vit_ckpt_layer=0, | |
prompt="a picture of ", | |
threshold=0.68, | |
delete_tag_index=[], | |
tag_list=f"{CONFIG_PATH}/data/tag_list.txt", | |
): | |
r"""Tag2Text inference module, both captioning and tagging are included. | |
Tag2Text is an efficient and controllable vision-language pre-training framework. | |
Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657 | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
threshold (int): tagging threshold | |
delete_tag_index (list): delete some tags that may disturb captioning | |
""" | |
super().__init__() | |
# create image encoder | |
if vit == "swin_b": | |
if image_size == 224: | |
vision_config_path = f"{CONFIG_PATH}/configs/swin/config_swinB_224.json" | |
elif image_size == 384: | |
vision_config_path = f"{CONFIG_PATH}/configs/swin/config_swinB_384.json" | |
vision_config = read_json(vision_config_path) | |
assert image_size == vision_config["image_res"] | |
# assert config['patch_size'] == 32 | |
vision_width = vision_config["vision_width"] | |
self.visual_encoder = SwinTransformer( | |
img_size=vision_config["image_res"], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config["embed_dim"], | |
depths=vision_config["depths"], | |
num_heads=vision_config["num_heads"], | |
window_size=vision_config["window_size"], | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False, | |
) | |
else: | |
self.visual_encoder, vision_width = create_vit( | |
vit, image_size, vit_grad_ckpt, vit_ckpt_layer | |
) | |
# create tokenzier | |
self.tokenizer = init_tokenizer() | |
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder | |
# create image-tag interaction encoder | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = vision_width | |
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False) | |
# create image-tag-text decoder | |
decoder_config = BertConfig.from_json_file(med_config) | |
self.text_decoder = BertLMHeadModel(config=decoder_config) | |
self.delete_tag_index = delete_tag_index | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 | |
# load tag list | |
self.tag_list = self.load_tag_list(tag_list) | |
# create image-tag recognition decoder | |
self.threshold = threshold | |
self.num_class = len(self.tag_list) | |
q2l_config = BertConfig.from_json_file(f"{CONFIG_PATH}/configs/q2l_config.json") | |
q2l_config.encoder_width = vision_width | |
self.tagging_head = BertModel(config=q2l_config, add_pooling_layer=False) | |
self.tagging_head.resize_token_embeddings(len(self.tokenizer)) | |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
self.fc = GroupWiseLinear(self.num_class, q2l_config.hidden_size, bias=True) | |
self.del_selfattention() | |
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder" | |
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, "", " ") | |
def load_tag_list(self, tag_list_file): | |
with open(tag_list_file) as f: | |
tag_list = f.read().splitlines() | |
tag_list = np.array(tag_list) | |
return tag_list | |
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label | |
def del_selfattention(self): | |
del self.tagging_head.embeddings | |
for layer in self.tagging_head.encoder.layer: | |
del layer.attention | |
def generate( | |
self, | |
image, | |
sample=False, | |
num_beams=3, | |
max_length=30, | |
min_length=10, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
tag_input=None, | |
return_tag_predict=False, | |
): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
# if not user specified tags, recognized image tags using image-tag recogntiion decoder | |
if tag_input == None: | |
image_cls_embeds = image_embeds[:, 0, :] | |
image_spatial_embeds = image_embeds[:, 1:, :] | |
bs = image_spatial_embeds.shape[0] | |
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1) | |
tagging_embed = self.tagging_head( | |
encoder_embeds=label_embed, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=False, | |
mode="tagging", | |
) | |
logits = self.fc(tagging_embed[0]) | |
targets = torch.where( | |
torch.sigmoid(logits) > self.threshold, | |
torch.tensor(1.0).to(image.device), | |
torch.zeros(self.num_class).to(image.device), | |
) | |
tag = targets.cpu().numpy() | |
# delete some tags that may disturb captioning | |
tag[:, self.delete_tag_index] = 0 | |
tag_input = [] | |
for b in range(bs): | |
index = np.argwhere(tag[b] == 1) | |
token = self.tag_list[index].squeeze(axis=1) | |
tag_input.append(" | ".join(token)) | |
tag_output = tag_input | |
# beam search for text generation(default) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) | |
tag_input_temp = [] | |
for tag in tag_input: | |
for i in range(num_beams): | |
tag_input_temp.append(tag) | |
tag_input = tag_input_temp | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
# tokenizer input tags | |
tag_input_tokenzier = self.tokenizer( | |
tag_input, | |
padding="max_length", | |
truncation=True, | |
max_length=40, | |
return_tensors="pt", | |
).to(image.device) | |
encoder_input_ids = tag_input_tokenzier.input_ids | |
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id | |
# put input tag into image-tag interaction encoder to interact with image embeddings | |
output_tagembedding = self.tag_encoder( | |
encoder_input_ids, | |
attention_mask=tag_input_tokenzier.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
# prompt trick for better captioning, followed BLIP | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to( | |
image.device | |
) | |
input_ids[:, 0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
# nucleus sampling | |
model_kwargs = { | |
"encoder_hidden_states": output_tagembedding.last_hidden_state, | |
"encoder_attention_mask": None, | |
} | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs, | |
) | |
else: | |
# beam search (default) | |
model_kwargs = { | |
"encoder_hidden_states": output_tagembedding.last_hidden_state, | |
"encoder_attention_mask": None, | |
} | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs, | |
) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt) :]) | |
if return_tag_predict == True: | |
return captions, tag_output | |
return captions | |
# load pretrained model parameters | |
def tag2text_caption(pretrained="", **kwargs): | |
model = Tag2Text_Caption(**kwargs) | |
if pretrained: | |
if kwargs["vit"] == "swin_b": | |
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs) | |
else: | |
model, msg = load_checkpoint(model, pretrained) | |
print("vit:", kwargs["vit"]) | |
print("msg", msg) | |
return model | |