Added vision analyzer tool / agent
Browse files- agents/llama_index_agent.py +20 -1
- requirements.txt +2 -1
- tools/multimedia_tools.py +202 -22
agents/llama_index_agent.py
CHANGED
|
@@ -11,6 +11,8 @@ from llama_index.llms.anthropic import Anthropic
|
|
| 11 |
# In your GaiaAgent class initialization, add these imports at the top
|
| 12 |
from tools.multimedia_tools import (
|
| 13 |
transcribe_audio_tool,
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
from tools.web_tools import (
|
|
@@ -72,7 +74,9 @@ class GaiaAgent(ReActAgent):
|
|
| 72 |
tavily_tool.search,
|
| 73 |
transcribe_audio_tool,
|
| 74 |
execute_python_file_tool,
|
| 75 |
-
csv_excel_reader_tool
|
|
|
|
|
|
|
| 76 |
]
|
| 77 |
|
| 78 |
# Use default system prompt if not provided
|
|
@@ -158,6 +162,21 @@ class GaiaAgent(ReActAgent):
|
|
| 158 |
3. Extract the specific information requested from the transcript (e.g., ingredients, page numbers, names)
|
| 159 |
4. For audio tasks, ensure you've captured all relevant spoken content, including names, facts, or quotes as needed
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
## HANDLING CSV OR EXCEL DATA TASKS
|
| 162 |
When dealing with CSV files or data analysis tasks:
|
| 163 |
1. Check if a CSV file path is mentioned in the question or available in the context
|
|
|
|
| 11 |
# In your GaiaAgent class initialization, add these imports at the top
|
| 12 |
from tools.multimedia_tools import (
|
| 13 |
transcribe_audio_tool,
|
| 14 |
+
encode_image_tool,
|
| 15 |
+
vision_analyzer_tool
|
| 16 |
)
|
| 17 |
|
| 18 |
from tools.web_tools import (
|
|
|
|
| 74 |
tavily_tool.search,
|
| 75 |
transcribe_audio_tool,
|
| 76 |
execute_python_file_tool,
|
| 77 |
+
csv_excel_reader_tool,
|
| 78 |
+
encode_image_tool,
|
| 79 |
+
vision_analyzer_tool
|
| 80 |
]
|
| 81 |
|
| 82 |
# Use default system prompt if not provided
|
|
|
|
| 162 |
3. Extract the specific information requested from the transcript (e.g., ingredients, page numbers, names)
|
| 163 |
4. For audio tasks, ensure you've captured all relevant spoken content, including names, facts, or quotes as needed
|
| 164 |
|
| 165 |
+
## HANDLING IMAGE ANALYSIS TASKS
|
| 166 |
+
When dealing with image files for visual analysis:
|
| 167 |
+
1. First, check if an image file path is mentioned in the question or available in the context
|
| 168 |
+
2. For image analysis, follow this two-step process:
|
| 169 |
+
a. Use the encode_image_to_base64 tool to convert the image to a base64 string
|
| 170 |
+
b. Pass the image path and a specific analysis question to analyze_image_with_vision
|
| 171 |
+
3. The vision analyzer can perform various visual analysis tasks:
|
| 172 |
+
- General image description: "Describe this image in detail"
|
| 173 |
+
- Specific information extraction: "What text appears in this image?"
|
| 174 |
+
- Visual problem solving: "How many people are in this image?"
|
| 175 |
+
- Object identification: "What brands/products are visible in this image?"
|
| 176 |
+
4. Be specific in your analysis requests to get the most relevant information
|
| 177 |
+
5. For tasks that require both text extraction and visual analysis, prioritize using the vision analyzer
|
| 178 |
+
6. Always document your analysis and include relevant details in your notes to the writer_agent
|
| 179 |
+
|
| 180 |
## HANDLING CSV OR EXCEL DATA TASKS
|
| 181 |
When dealing with CSV files or data analysis tasks:
|
| 182 |
1. Check if a CSV file path is mentioned in the question or available in the context
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ llama-index-llms-anthropic
|
|
| 7 |
llama-index-llms-openai
|
| 8 |
llama-index-readers-whisper
|
| 9 |
llama-index-readers-file
|
| 10 |
-
openpyxl
|
|
|
|
|
|
| 7 |
llama-index-llms-openai
|
| 8 |
llama-index-readers-whisper
|
| 9 |
llama-index-readers-file
|
| 10 |
+
openpyxl
|
| 11 |
+
Pillow
|
tools/multimedia_tools.py
CHANGED
|
@@ -4,29 +4,14 @@ from llama_index.readers.whisper import WhisperReader
|
|
| 4 |
from llama_index.core.tools import FunctionTool
|
| 5 |
from llama_index.core import SimpleDirectoryReader
|
| 6 |
from llama_index.readers.file import (
|
| 7 |
-
|
| 8 |
-
HWPReader,
|
| 9 |
-
PDFReader,
|
| 10 |
-
EpubReader,
|
| 11 |
-
FlatReader,
|
| 12 |
-
HTMLTagReader,
|
| 13 |
-
ImageCaptionReader,
|
| 14 |
-
ImageReader,
|
| 15 |
-
ImageVisionLLMReader,
|
| 16 |
-
IPYNBReader,
|
| 17 |
-
MarkdownReader,
|
| 18 |
-
MboxReader,
|
| 19 |
-
PptxReader,
|
| 20 |
-
PandasCSVReader,
|
| 21 |
-
VideoAudioReader,
|
| 22 |
-
UnstructuredReader,
|
| 23 |
-
PyMuPDFReader,
|
| 24 |
-
ImageTabularChartReader,
|
| 25 |
-
XMLReader,
|
| 26 |
-
PagedCSVReader,
|
| 27 |
-
CSVReader,
|
| 28 |
-
RTFReader,
|
| 29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
class WhisperTranscriber:
|
| 32 |
"""Class for transcribing audio using OpenAI's Whisper model."""
|
|
@@ -71,4 +56,199 @@ transcribe_audio_tool = FunctionTool.from_defaults(
|
|
| 71 |
name="transcribe_audio",
|
| 72 |
description="Transcribes speech from an audio file to text using OpenAI's Whisper model. Provide the full path to the audio file.",
|
| 73 |
fn=whisper_transcriber.transcribe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
)
|
|
|
|
| 4 |
from llama_index.core.tools import FunctionTool
|
| 5 |
from llama_index.core import SimpleDirectoryReader
|
| 6 |
from llama_index.readers.file import (
|
| 7 |
+
ImageReader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
+
import base64
|
| 10 |
+
import sys
|
| 11 |
+
import traceback
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from llama_index.llms.openai import OpenAI
|
| 14 |
+
from llama_index.llms.anthropic import Anthropic
|
| 15 |
|
| 16 |
class WhisperTranscriber:
|
| 17 |
"""Class for transcribing audio using OpenAI's Whisper model."""
|
|
|
|
| 56 |
name="transcribe_audio",
|
| 57 |
description="Transcribes speech from an audio file to text using OpenAI's Whisper model. Provide the full path to the audio file.",
|
| 58 |
fn=whisper_transcriber.transcribe
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def encode_image_to_base64(file_path: str) -> str:
|
| 63 |
+
"""
|
| 64 |
+
Reads an image file and encodes it to a base64 string.
|
| 65 |
+
|
| 66 |
+
This function focuses exclusively on generating a base64 encoded string from an image file.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
file_path (str): Path to the image file to be encoded
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
str: The base64 encoded string of the image
|
| 73 |
+
|
| 74 |
+
Raises:
|
| 75 |
+
FileNotFoundError: If the specified file doesn't exist
|
| 76 |
+
ValueError: If the file has an unsupported extension
|
| 77 |
+
|
| 78 |
+
Examples:
|
| 79 |
+
>>> base64_data = encode_image_to_base64("data/photo.jpg")
|
| 80 |
+
"""
|
| 81 |
+
# Check if file exists
|
| 82 |
+
if not os.path.exists(file_path):
|
| 83 |
+
raise FileNotFoundError(f"File not found at {file_path}")
|
| 84 |
+
|
| 85 |
+
# Get file extension
|
| 86 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 87 |
+
supported_formats = ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp']
|
| 88 |
+
|
| 89 |
+
if file_ext not in supported_formats:
|
| 90 |
+
raise ValueError(f"Unsupported file extension: {file_ext}. Supported extensions are: {', '.join(supported_formats)}")
|
| 91 |
+
|
| 92 |
+
with open(file_path, "rb") as image_file:
|
| 93 |
+
encoded_string = base64.b64encode(image_file.read())
|
| 94 |
+
base64_image = encoded_string.decode('utf-8')
|
| 95 |
+
|
| 96 |
+
return base64_image
|
| 97 |
+
|
| 98 |
+
# Create a function tool for image encoding
|
| 99 |
+
encode_image_tool = FunctionTool.from_defaults(
|
| 100 |
+
name="encode_image_to_base64",
|
| 101 |
+
description="Reads an image file and converts it to a base64 encoded string. Use this tool to prepare images for vision analysis.",
|
| 102 |
+
fn=encode_image_to_base64
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
class VisionAnalyzerAgent:
|
| 106 |
+
"""
|
| 107 |
+
A specialized agent for analyzing images using vision models.
|
| 108 |
+
|
| 109 |
+
This agent can process images, analyze their content, and provide detailed descriptions
|
| 110 |
+
or answer questions about the visual elements.
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
model_provider: str = "openai",
|
| 116 |
+
model_name: str = "gpt-4o",
|
| 117 |
+
api_key: Optional[str] = None,
|
| 118 |
+
**kwargs
|
| 119 |
+
):
|
| 120 |
+
"""
|
| 121 |
+
Initialize a VisionAnalyzerAgent.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
model_provider: The LLM provider to use ("anthropic" or "openai")
|
| 125 |
+
model_name: The specific model name to use
|
| 126 |
+
api_key: API key for the provider (defaults to environment variable)
|
| 127 |
+
**kwargs: Additional parameters for the model
|
| 128 |
+
"""
|
| 129 |
+
self.model_provider = model_provider.lower()
|
| 130 |
+
self.model_name = model_name
|
| 131 |
+
self.api_key = api_key
|
| 132 |
+
|
| 133 |
+
# Set up the vision model client
|
| 134 |
+
if self.model_provider == "anthropic":
|
| 135 |
+
self.client = Anthropic(api_key=api_key or os.getenv("ANTHROPIC_API_KEY"))
|
| 136 |
+
elif self.model_provider == "openai":
|
| 137 |
+
self.client = OpenAI(api_key=api_key or os.getenv("OPENAI_API_KEY"))
|
| 138 |
+
else:
|
| 139 |
+
raise ValueError(f"Unsupported model provider: {model_provider}. "
|
| 140 |
+
f"Supported providers are: anthropic, openai")
|
| 141 |
+
|
| 142 |
+
def analyze_image(self, image_base64: str, query: str = "Describe this image in detail.") -> str:
|
| 143 |
+
"""
|
| 144 |
+
Analyze an image using the vision model.
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
image_base64: Base64 encoded image data
|
| 148 |
+
query: The question or instruction for image analysis
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
str: The analysis result from the vision model
|
| 152 |
+
"""
|
| 153 |
+
# Prepare the image for the appropriate model
|
| 154 |
+
if self.model_provider == "anthropic":
|
| 155 |
+
# Handle Anthropic Claude models
|
| 156 |
+
try:
|
| 157 |
+
# Determine MIME type based on image data
|
| 158 |
+
mime_type = "image/jpeg" # Default
|
| 159 |
+
if image_base64.startswith('/9j/'):
|
| 160 |
+
mime_type = "image/jpeg"
|
| 161 |
+
elif image_base64.startswith('iVBORw0KGgo'):
|
| 162 |
+
mime_type = "image/png"
|
| 163 |
+
|
| 164 |
+
# Create the message with image and text
|
| 165 |
+
response = self.client.messages.create(
|
| 166 |
+
model=self.model_name,
|
| 167 |
+
max_tokens=1024,
|
| 168 |
+
messages=[
|
| 169 |
+
{
|
| 170 |
+
"role": "user",
|
| 171 |
+
"content": [
|
| 172 |
+
{
|
| 173 |
+
"type": "text",
|
| 174 |
+
"text": query
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"type": "image",
|
| 178 |
+
"source": {
|
| 179 |
+
"type": "base64",
|
| 180 |
+
"media_type": mime_type,
|
| 181 |
+
"data": image_base64
|
| 182 |
+
}
|
| 183 |
+
}
|
| 184 |
+
]
|
| 185 |
+
}
|
| 186 |
+
]
|
| 187 |
+
)
|
| 188 |
+
return response.content[0].text
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
return f"Error analyzing image with Anthropic: {str(e)}"
|
| 192 |
+
|
| 193 |
+
elif self.model_provider == "openai":
|
| 194 |
+
# Handle OpenAI GPT-4 Vision models
|
| 195 |
+
try:
|
| 196 |
+
response = self.client.chat.completions.create(
|
| 197 |
+
model=self.model_name,
|
| 198 |
+
max_tokens=1024,
|
| 199 |
+
messages=[
|
| 200 |
+
{
|
| 201 |
+
"role": "user",
|
| 202 |
+
"content": [
|
| 203 |
+
{
|
| 204 |
+
"type": "text",
|
| 205 |
+
"text": query
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"type": "image_url",
|
| 209 |
+
"image_url": {
|
| 210 |
+
"url": f"data:image/jpeg;base64,{image_base64}"
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
]
|
| 214 |
+
}
|
| 215 |
+
]
|
| 216 |
+
)
|
| 217 |
+
return response.choices[0].message.content
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
return f"Error analyzing image with OpenAI: {str(e)}"
|
| 221 |
+
|
| 222 |
+
else:
|
| 223 |
+
return "Unsupported model provider"
|
| 224 |
+
|
| 225 |
+
# Create a function tool for the vision analyzer
|
| 226 |
+
def analyze_image_with_vision(image_path: str, query: str = "Describe this image in detail.") -> str:
|
| 227 |
+
"""
|
| 228 |
+
Analyze an image using a vision-enabled model.
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
image_path: Path to the image file
|
| 232 |
+
query: The question or instruction for image analysis
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
str: The analysis result from the vision model
|
| 236 |
+
"""
|
| 237 |
+
try:
|
| 238 |
+
# Encode the image to base64
|
| 239 |
+
base64_image = encode_image_to_base64(image_path)
|
| 240 |
+
|
| 241 |
+
# Create a vision analyzer agent and analyze the image
|
| 242 |
+
vision_agent = VisionAnalyzerAgent()
|
| 243 |
+
result = vision_agent.analyze_image(base64_image, query)
|
| 244 |
+
|
| 245 |
+
return result
|
| 246 |
+
except Exception as e:
|
| 247 |
+
return f"Error analyzing image: {str(e)}"
|
| 248 |
+
|
| 249 |
+
# Create a function tool for vision analysis
|
| 250 |
+
vision_analyzer_tool = FunctionTool.from_defaults(
|
| 251 |
+
name="analyze_image_with_vision",
|
| 252 |
+
description="Analyzes images using a vision-enabled model. Provide the image path and an optional query/instruction.",
|
| 253 |
+
fn=analyze_image_with_vision
|
| 254 |
)
|