File size: 19,016 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
cb2e2ec
2364c68
cb2e2ec
 
 
 
 
 
e80aab9
3db6293
cb2e2ec
 
 
e80aab9
cb2e2ec
29179b5
 
43efb22
29179b5
 
 
 
 
cb2e2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
cb2e2ec
 
 
29179b5
 
cb2e2ec
 
 
 
 
29179b5
 
cb2e2ec
29179b5
 
cb2e2ec
29179b5
cb2e2ec
 
 
29179b5
cb2e2ec
 
 
 
 
 
 
 
 
 
 
29179b5
 
cb2e2ec
 
 
 
31243f4
cb2e2ec
 
 
 
31243f4
29179b5
2364c68
cb2e2ec
 
29179b5
cb2e2ec
29179b5
 
4021bf3
cb2e2ec
 
 
 
 
 
31243f4
cb2e2ec
 
31243f4
7d65c66
cb2e2ec
3c4371f
cb2e2ec
3c4371f
7d65c66
3c4371f
cb2e2ec
 
 
7e4a06b
31243f4
 
e80aab9
cb2e2ec
31243f4
cb2e2ec
31243f4
 
3c4371f
31243f4
cb2e2ec
 
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
cb2e2ec
eccf8e4
cb2e2ec
 
 
 
 
 
 
 
 
7d65c66
31243f4
cb2e2ec
31243f4
cb2e2ec
 
 
31243f4
cb2e2ec
 
e80aab9
31243f4
 
3c4371f
cb2e2ec
 
 
7d65c66
31243f4
 
e80aab9
cb2e2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
3c4371f
cb2e2ec
31243f4
b177367
7d65c66
3c4371f
31243f4
cb2e2ec
e80aab9
7d65c66
31243f4
e80aab9
cb2e2ec
 
 
 
 
 
 
 
e80aab9
 
cb2e2ec
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
cb2e2ec
e80aab9
cb2e2ec
31243f4
 
cb2e2ec
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
cb2e2ec
 
 
 
 
 
e80aab9
 
cb2e2ec
0ee0419
e514fd7
 
 
cb2e2ec
 
 
e514fd7
cb2e2ec
 
 
 
e514fd7
e80aab9
 
cb2e2ec
 
 
e80aab9
cb2e2ec
e80aab9
9088b99
7d65c66
e80aab9
cb2e2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
cb2e2ec
31243f4
e80aab9
 
cb2e2ec
e80aab9
3c4371f
7d65c66
3c4371f
cb2e2ec
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
cb2e2ec
7d65c66
 
 
 
 
 
3c4371f
 
cb2e2ec
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import asyncio
from pathlib import Path
from datetime import datetime
from typing import List, Dict, Any, Optional
from tqdm.asyncio import tqdm as async_tqdm
from agents.llama_index_agent import GaiaAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_DIR = "cache"
CACHE_FILE = os.path.join(CACHE_DIR, "agent_cache.json")
MAX_CONCURRENT_REQUESTS = 3  # Limit concurrent API calls

# Model configurations
CLAUDE = {
    "model_provider": "anthropic",
    "model_name": "claude-3-7-sonnet-latest"
}
OPENAI = {
    "model_provider": "openai",
    "model_name": "gpt-4o"
}

# --- Optimized Agent Implementation ---
class OptimizedGaiaAgent:
    """
    Enhanced GAIA agent with caching and asynchronous processing capabilities.
    """
    def __init__(
            self,
            model_config=CLAUDE,
            use_cache=True,
            cache_file=CACHE_FILE,
            max_concurrent=MAX_CONCURRENT_REQUESTS
            ):
        """
        Initialize the optimized agent.
        
        Args:
            model_config: Dictionary with model_provider and model_name
            use_cache: Whether to use caching
            cache_file: Path to the cache file
            max_concurrent: Maximum number of concurrent requests
        """
        self.agent = GaiaAgent(**model_config)
        self.model_config = model_config
        self.use_cache = use_cache
        self.cache_file = cache_file
        self.cache = self._load_cache() if use_cache else {}
        self.semaphore = asyncio.Semaphore(max_concurrent)
        
        print(f"OptimizedGaiaAgent initialized with {model_config['model_provider']} {model_config['model_name']}")
        if use_cache:
            print(f"Cache loaded with {len(self.cache)} answers")
            
    def _load_cache(self) -> Dict[str, str]:
        """Load cached answers from file"""
        # Create cache directory if it doesn't exist
        os.makedirs(os.path.dirname(self.cache_file), exist_ok=True)
        
        cache_path = Path(self.cache_file)
        if cache_path.exists():
            try:
                with open(cache_path, 'r') as f:
                    return json.load(f)
            except Exception as e:
                print(f"Error loading cache: {e}")
                return {}
        return {}
        
    def _save_cache(self) -> None:
        """Save cached answers to file"""
        try:
            with open(self.cache_file, 'w') as f:
                json.dump(self.cache, f, indent=2)
        except Exception as e:
            print(f"Error saving cache: {e}")
            
    def _get_cache_key(self, question: str) -> str:
        """Generate a consistent key for the cache"""
        # Strip whitespace and normalize
        return question.strip()
            
    async def process_question(self, task_id: str, question: str) -> Dict[str, Any]:
        """
        Process a single question, using cache if available.
        
        Args:
            task_id: ID of the task/question
            question: The question text
            
        Returns:
            Dictionary with task_id, question, answer, and metadata
        """
        cache_key = self._get_cache_key(question)
        
        # Check cache first
        if self.use_cache and cache_key in self.cache:
            print(f"🔄 Cache hit for task {task_id[:8]}...")
            return {
                "task_id": task_id,
                "question": question,
                "submitted_answer": self.cache[cache_key],
                "cached": True,
                "error": False
            }
            
        # Process the question (with semaphore to limit concurrent requests)
        async with self.semaphore:
            print(f"⚙️ Processing task {task_id[:8]}...")
            try:
                response = await self.agent.run(question)
                answer = response.response.blocks[-1].text
                
                # Save to cache
                if self.use_cache:
                    self.cache[cache_key] = answer
                    # Use asyncio.to_thread for file I/O to avoid blocking
                    await asyncio.to_thread(self._save_cache)
                    
                return {
                    "task_id": task_id,
                    "question": question,
                    "submitted_answer": answer,
                    "cached": False,
                    "error": False
                }
            except Exception as e:
                error_message = f"ERROR: {str(e)}"
                print(f"❌ Error processing task {task_id[:8]}: {error_message}")
                return {
                    "task_id": task_id,
                    "question": question,
                    "submitted_answer": error_message,
                    "cached": False,
                    "error": True
                }
                
    async def process_all(
            self, 
            questions_data: List[Dict[str, Any]], 
            progress_callback=None
        ) -> List[Dict[str, Any]]:
        """
        Process all questions, with progress reporting.
        
        Args:
            questions_data: List of question dictionaries
            progress_callback: Function to call with progress updates
            
        Returns:
            List of results with answers and metadata
        """
        # Filter out invalid questions
        valid_questions = [
            item for item in questions_data 
            if item.get("task_id") and item.get("question") is not None
        ]
        
        if not valid_questions:
            print("No valid questions to process.")
            return []
            
        total = len(valid_questions)
        print(f"Processing {total} questions with {MAX_CONCURRENT_REQUESTS} concurrent tasks...")
        
        # Process questions and collect results
        results = []
        
        # Create async tasks
        tasks = [
            self.process_question(item["task_id"], item["question"])
            for item in valid_questions
        ]
        
        # Process with progress tracking
        if progress_callback:
            progress_callback(0, desc="Starting processing...")
        
        # Process tasks one by one with progress updates
        for i, task in enumerate(asyncio.as_completed(tasks)):
            result = await task
            results.append(result)
            
            # Update progress
            if progress_callback:
                progress_callback((i + 1) / total, desc=f"Processed {i + 1}/{total} questions")
            
        # Sort results to match original order
        id_to_result = {result["task_id"]: result for result in results}
        ordered_results = [
            id_to_result.get(
                item["task_id"], 
                {"task_id": item["task_id"], "question": item.get("question"), "submitted_answer": "ERROR: Processing failed", "error": True}
            )
            for item in valid_questions
        ]
        
        return ordered_results


# --- Main Application Class ---
class BasicAgent:
    """
    Optimized agent wrapper for the GAIA benchmark.
    """
    def __init__(
            self,
            model_provider="anthropic",
            model_name="claude-3-7-sonnet-latest",
            api_key=None,
            use_cache=True,
            max_concurrent=MAX_CONCURRENT_REQUESTS
            ):
        """
        Initialize the BasicAgent with caching and async capabilities.
        
        Args:
            model_provider: LLM provider to use
            model_name: Specific model to use
            api_key: Optional API key
            use_cache: Whether to use caching
            max_concurrent: Maximum concurrent requests
        """
        model_config = {
            "model_provider": model_provider,
            "model_name": model_name,
            "api_key": api_key
        }
        
        self.agent = OptimizedGaiaAgent(
            model_config=model_config,
            use_cache=use_cache,
            max_concurrent=max_concurrent
        )
        print(f"BasicAgent initialized with {model_provider} {model_name}.")
        
    async def process_async(self, questions_data, progress_callback=None):
        """Process questions asynchronously with progress reporting"""
        return await self.agent.process_all(questions_data, progress_callback)
        
    def __call__(self, question: str) -> str:
        """
        Process a single question (for compatibility with the original interface).
        This method is synchronous for backward compatibility.
        """
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        async def agentic_main():
            result = await self.agent.process_question("single", question)
            return result["submitted_answer"]
            
        final_answer = asyncio.run(agentic_main())
        print(f"Agent returning answer: {final_answer}")
        return final_answer


# --- Async Run and Submit Function ---
async def async_run_and_submit_all(
        profile: gr.OAuthProfile | None,
        progress=gr.Progress()
    ) -> tuple:
    """
    Asynchronous version of run_and_submit_all.
    Fetches questions, processes them concurrently, and submits answers.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if not profile:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    username = f"{profile.username}"
    print(f"User logged in: {username}")

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        progress(0, desc="Initializing agent...")
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
        
    # In the case of an app running as a Hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    progress(0.1, desc="Fetching questions...")
    try:
        # Use asyncio for the HTTP request
        async def fetch_questions():
            loop = asyncio.get_event_loop()
            return await loop.run_in_executor(
                None, 
                lambda: requests.get(questions_url, timeout=15)
            )
        
        response = await fetch_questions()
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
            
        print(f"Fetched {len(questions_data)} questions.")
        progress(0.2, desc=f"Successfully fetched {len(questions_data)} questions.")
        
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Process Questions Asynchronously
    print(f"Processing {len(questions_data)} questions...")
    try:
        # Define progress update function
        def update_progress(value, desc=""):
            # Scale progress from 0.2-0.8 for the processing phase
            progress(0.2 + (value * 0.6), desc=desc)
            
        results = await agent.process_async(questions_data, update_progress)
        
        # Convert results to the expected format
        answers_payload = [
            {"task_id": result["task_id"], "submitted_answer": result["submitted_answer"]}
            for result in results
        ]
        
        # Format for display
        results_log = [
            {"Task ID": result["task_id"], "Question": result["question"], "Submitted Answer": result["submitted_answer"]}
            for result in results
        ]
        
        progress(0.8, desc=f"Processed all {len(results)} questions. Preparing submission...")
        
    except Exception as e:
        print(f"Error during question processing: {e}")
        return f"Error during question processing: {e}", None

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame([])

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)
    progress(0.9, desc="Submitting answers...")

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        async def submit_answers():
            loop = asyncio.get_event_loop()
            return await loop.run_in_executor(
                None, 
                lambda: requests.post(submit_url, json=submission_data, timeout=60)
            )
            
        response = await submit_answers()
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        print("Submission successful.")
        progress(1.0, desc="Complete!")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# Synchronous wrapper for the async function (for Gradio compatibility)
def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
    """Synchronous wrapper for the async function"""
    return asyncio.run(async_run_and_submit_all(profile, progress))


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Optimized GAIA Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Please clone this space, then modify the code to define your agent's logic, the tools, and necessary packages.
        2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, process them, and see your score.

        This implementation features:
        - **Caching**: Answers are saved to avoid reprocessing the same questions
        - **Asynchronous Processing**: Questions are processed concurrently for better performance
        - **Progress Tracking**: See real-time progress as questions are processed
        """
    )

    with gr.Row():
        gr.LoginButton()
        clear_cache_button = gr.Button("Clear Cache")

    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    # Define clear cache function
    def clear_cache():
        if os.path.exists(CACHE_FILE):
            try:
                os.remove(CACHE_FILE)
                return f"Cache cleared successfully! ({CACHE_FILE})"
            except Exception as e:
                return f"Error clearing cache: {e}"
        return "No cache file found."

    # Connect the components
    clear_cache_button.click(
        fn=clear_cache,
        outputs=status_output
    )

    run_button.click(
        fn=run_and_submit_all,
        inputs=[gr.OAuthProfile()],
        outputs=[status_output, results_table]
    )

# --- App Entry Point ---
if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Optimized Agent Evaluation...")
    demo.launch(debug=True, share=False)