File size: 1,092 Bytes
2d81f0a d6d8983 2d81f0a 0ae1a0d 2d81f0a 0ae1a0d 2d81f0a 0ae1a0d cc67d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
# import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch(share=True)
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['siamese.jpg']
interpretation='default'
enable_queue=True
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() |