Spaces:
Running
Running
Upload models/basic.py
Browse files- models/basic.py +504 -0
models/basic.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.nn.utils.spectral_norm as spectral_norm
|
6 |
+
from torch.autograd import Function
|
7 |
+
from utils import util, cielab
|
8 |
+
import cv2, math, random
|
9 |
+
|
10 |
+
def tensor2array(tensors):
|
11 |
+
arrays = tensors.detach().to("cpu").numpy()
|
12 |
+
return np.transpose(arrays, (0, 2, 3, 1))
|
13 |
+
|
14 |
+
|
15 |
+
def rgb2gray(color_batch):
|
16 |
+
#! gray = 0.299*R+0.587*G+0.114*B
|
17 |
+
gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114
|
18 |
+
gray_batch = gray_batch.unsqueeze_(1)
|
19 |
+
return gray_batch
|
20 |
+
|
21 |
+
|
22 |
+
def getParamsAmount(model):
|
23 |
+
params = list(model.parameters())
|
24 |
+
count = 0
|
25 |
+
for var in params:
|
26 |
+
l = 1
|
27 |
+
for j in var.size():
|
28 |
+
l *= j
|
29 |
+
count += l
|
30 |
+
return count
|
31 |
+
|
32 |
+
|
33 |
+
def checkAverageGradient(model):
|
34 |
+
meanGrad, cnt = 0.0, 0
|
35 |
+
for name, parms in model.named_parameters():
|
36 |
+
if parms.requires_grad:
|
37 |
+
meanGrad += torch.mean(torch.abs(parms.grad))
|
38 |
+
cnt += 1
|
39 |
+
return meanGrad.item() / cnt
|
40 |
+
|
41 |
+
|
42 |
+
def get_random_mask(N, H, W, minNum, maxNum):
|
43 |
+
binary_maps = np.zeros((N, H*W), np.float32)
|
44 |
+
for i in range(N):
|
45 |
+
locs = random.sample(range(0, H*W), random.randint(minNum,maxNum))
|
46 |
+
binary_maps[i, locs] = 1
|
47 |
+
return binary_maps.reshape(N,1,H,W)
|
48 |
+
|
49 |
+
|
50 |
+
def io_user_control(hint_mask, spix_colors, output=True):
|
51 |
+
cache_dir = '/apdcephfs/private_richardxia'
|
52 |
+
if output:
|
53 |
+
print('--- data saving')
|
54 |
+
mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0
|
55 |
+
util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1)
|
56 |
+
fake_gray = torch.zeros_like(spix_colors[:,[0],:,:])
|
57 |
+
spix_labs = torch.cat((fake_gray,spix_colors), dim=1)
|
58 |
+
spix_imgs = tensor2array(spix_labs)
|
59 |
+
util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1)
|
60 |
+
return hint_mask, spix_colors
|
61 |
+
else:
|
62 |
+
print('--- data loading')
|
63 |
+
mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE)
|
64 |
+
mask_img = np.expand_dims(mask_img, axis=2) / 255.
|
65 |
+
hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1)))
|
66 |
+
hint_mask = hint_mask.unsqueeze(0).cuda()
|
67 |
+
bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR)
|
68 |
+
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
69 |
+
rgb_img = np.array(rgb_img / 255., np.float32)
|
70 |
+
lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
|
71 |
+
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
|
72 |
+
ab_chans = lab_img[1:3,:,:] / 110.
|
73 |
+
spix_colors = ab_chans.unsqueeze(0).cuda()
|
74 |
+
return hint_mask.float(), spix_colors.float()
|
75 |
+
|
76 |
+
|
77 |
+
class Quantize(Function):
|
78 |
+
@staticmethod
|
79 |
+
def forward(ctx, x):
|
80 |
+
ctx.save_for_backward(x)
|
81 |
+
y = x.round()
|
82 |
+
return y
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def backward(ctx, grad_output):
|
86 |
+
"""
|
87 |
+
In the backward pass we receive a Tensor containing the gradient of the loss
|
88 |
+
with respect to the output, and we need to compute the gradient of the loss
|
89 |
+
with respect to the input.
|
90 |
+
"""
|
91 |
+
inputX = ctx.saved_tensors
|
92 |
+
return grad_output
|
93 |
+
|
94 |
+
|
95 |
+
def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None):
|
96 |
+
## to highlight the seeds with 1-pixel margin
|
97 |
+
binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps))
|
98 |
+
center_mask = dilate_seeds(binary_map, kernel_size=kernel_size)
|
99 |
+
margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask
|
100 |
+
## drop colors
|
101 |
+
dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2)
|
102 |
+
marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays)
|
103 |
+
if base_ABs is None:
|
104 |
+
marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs)
|
105 |
+
else:
|
106 |
+
marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs)
|
107 |
+
marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs)
|
108 |
+
return torch.cat((marked_grays,marked_ABs), dim=1)
|
109 |
+
|
110 |
+
def dilate_seeds(gate_maps, kernel_size=3):
|
111 |
+
N,C,H,W = gate_maps.shape
|
112 |
+
input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2)
|
113 |
+
#! Notice: differentiable? just like max pooling?
|
114 |
+
dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True)
|
115 |
+
output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1)
|
116 |
+
#print('-------', input_unf.shape)
|
117 |
+
return output
|
118 |
+
|
119 |
+
|
120 |
+
class RebalanceLoss(Function):
|
121 |
+
@staticmethod
|
122 |
+
def forward(ctx, data_input, weights):
|
123 |
+
ctx.save_for_backward(weights)
|
124 |
+
return data_input.clone()
|
125 |
+
|
126 |
+
@staticmethod
|
127 |
+
def backward(ctx, grad_output):
|
128 |
+
weights, = ctx.saved_tensors
|
129 |
+
# reweigh gradient pixelwise so that rare colors get a chance to
|
130 |
+
# contribute
|
131 |
+
grad_input = grad_output * weights
|
132 |
+
# second return value is None since we are not interested in the
|
133 |
+
# gradient with respect to the weights
|
134 |
+
return grad_input, None
|
135 |
+
|
136 |
+
|
137 |
+
class GetClassWeights:
|
138 |
+
def __init__(self, cielab, lambda_=0.5, device='cuda'):
|
139 |
+
prior = torch.from_numpy(cielab.gamut.prior).cuda()
|
140 |
+
uniform = torch.zeros_like(prior)
|
141 |
+
uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform)
|
142 |
+
self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform)
|
143 |
+
self.weights /= torch.sum(prior * self.weights)
|
144 |
+
|
145 |
+
def __call__(self, ab_actual):
|
146 |
+
return self.weights[ab_actual.argmax(dim=1, keepdim=True)]
|
147 |
+
|
148 |
+
|
149 |
+
class ColorLabel:
|
150 |
+
def __init__(self, lambda_=0.5, device='cuda'):
|
151 |
+
self.cielab = cielab.CIELAB()
|
152 |
+
self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device)
|
153 |
+
prior = torch.from_numpy(self.cielab.gamut.prior).to(device)
|
154 |
+
uniform = torch.zeros_like(prior)
|
155 |
+
uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform)
|
156 |
+
self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform)
|
157 |
+
self.weights /= torch.sum(prior * self.weights)
|
158 |
+
|
159 |
+
def visualize_label(self, step=3):
|
160 |
+
height, width = 200, 313*step
|
161 |
+
label_lab = np.ones((height,width,3), np.float32)
|
162 |
+
for x in range(313):
|
163 |
+
ab = self.cielab.q_to_ab[x,:]
|
164 |
+
label_lab[:,step*x:step*(x+1),1:] = ab / 110.
|
165 |
+
label_lab[:,:,0] = np.zeros((height,width), np.float32)
|
166 |
+
return label_lab
|
167 |
+
|
168 |
+
@staticmethod
|
169 |
+
def _gauss_eval(x, mu, sigma):
|
170 |
+
norm = 1 / (2 * math.pi * sigma)
|
171 |
+
return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2))
|
172 |
+
|
173 |
+
def get_classweights(self, batch_gt_indx):
|
174 |
+
#return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)]
|
175 |
+
return self.weights[batch_gt_indx]
|
176 |
+
|
177 |
+
def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0):
|
178 |
+
batch_ab = batch_ab * 110.
|
179 |
+
n, _, h, w = batch_ab.shape
|
180 |
+
m = n * h * w
|
181 |
+
# find nearest neighbours
|
182 |
+
ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w)
|
183 |
+
cdist = torch.cdist(self.q_to_ab, ab_.t())
|
184 |
+
nns = cdist.argsort(dim=0)[:neighbours, :]
|
185 |
+
# gaussian weighting
|
186 |
+
nn_gauss = batch_ab.new_zeros(neighbours, m)
|
187 |
+
for i in range(neighbours):
|
188 |
+
nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma)
|
189 |
+
nn_gauss /= nn_gauss.sum(dim=0, keepdim=True)
|
190 |
+
# expand
|
191 |
+
bins = self.cielab.gamut.EXPECTED_SIZE
|
192 |
+
q = batch_ab.new_zeros(bins, m)
|
193 |
+
q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss
|
194 |
+
return q.reshape(bins, n, h, w).permute(1, 0, 2, 3)
|
195 |
+
|
196 |
+
def decode_ind2ab(self, batch_q, T=0.38):
|
197 |
+
_, _, h, w = batch_q.shape
|
198 |
+
batch_q = F.softmax(batch_q, dim=1)
|
199 |
+
if T%1 == 0:
|
200 |
+
# take the T-st probable index
|
201 |
+
sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True)
|
202 |
+
#print('checking [index]', batch_indexs[:,0:5,5,5])
|
203 |
+
#print('checking [probs]', sorted_probs[:,0:5,5,5])
|
204 |
+
batch_indexs = batch_indexs[:,T:T+1,:,:]
|
205 |
+
#batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:])
|
206 |
+
ab = torch.stack([
|
207 |
+
self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1)
|
208 |
+
for q_i in batch_indexs])
|
209 |
+
else:
|
210 |
+
batch_q = torch.exp(batch_q / T)
|
211 |
+
batch_q /= batch_q.sum(dim=1, keepdim=True)
|
212 |
+
a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,)))
|
213 |
+
a = a.unsqueeze(dim=1)
|
214 |
+
b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,)))
|
215 |
+
b = b.unsqueeze(dim=1)
|
216 |
+
ab = torch.cat((a, b), dim=1)
|
217 |
+
ab = ab / 110.
|
218 |
+
return ab.type(batch_q.dtype)
|
219 |
+
|
220 |
+
|
221 |
+
def init_spixel_grid(img_height, img_width, spixel_size=16):
|
222 |
+
# get spixel id for the final assignment
|
223 |
+
n_spixl_h = int(np.floor(img_height/spixel_size))
|
224 |
+
n_spixl_w = int(np.floor(img_width/spixel_size))
|
225 |
+
spixel_height = int(img_height / (1. * n_spixl_h))
|
226 |
+
spixel_width = int(img_width / (1. * n_spixl_w))
|
227 |
+
spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w)))
|
228 |
+
|
229 |
+
def shift9pos(input, h_shift_unit=1, w_shift_unit=1):
|
230 |
+
# input should be padding as (c, 1+ height+1, 1+width+1)
|
231 |
+
input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge')
|
232 |
+
input_pd = np.expand_dims(input_pd, axis=0)
|
233 |
+
# assign to ...
|
234 |
+
top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
|
235 |
+
bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
|
236 |
+
left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
|
237 |
+
right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
|
238 |
+
center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit]
|
239 |
+
bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:]
|
240 |
+
bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit]
|
241 |
+
top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:]
|
242 |
+
top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit]
|
243 |
+
shift_tensor = np.concatenate([ top_left, top, top_right,
|
244 |
+
left, center, right,
|
245 |
+
bottom_left, bottom, bottom_right], axis=0)
|
246 |
+
return shift_tensor
|
247 |
+
|
248 |
+
spix_idx_tensor_ = shift9pos(spix_values)
|
249 |
+
spix_idx_tensor = np.repeat(
|
250 |
+
np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2)
|
251 |
+
spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float)
|
252 |
+
|
253 |
+
#! pixel coord feature maps
|
254 |
+
all_h_coords = np.arange(0, img_height, 1)
|
255 |
+
all_w_coords = np.arange(0, img_width, 1)
|
256 |
+
curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij'))
|
257 |
+
coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]])
|
258 |
+
coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float)
|
259 |
+
|
260 |
+
return spixel_id_tensor, coord_feat_tensor
|
261 |
+
|
262 |
+
|
263 |
+
def split_spixels(assign_map, spixel_ids):
|
264 |
+
N,C,H,W = assign_map.shape
|
265 |
+
spixel_id_map = spixel_ids.expand(N,-1,-1,-1)
|
266 |
+
assig_max,_ = torch.max(assign_map, dim=1, keepdim=True)
|
267 |
+
assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda())
|
268 |
+
## winner take all
|
269 |
+
new_spixl_map_ = spixel_id_map * assignment_
|
270 |
+
new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int)
|
271 |
+
return new_spixl_map
|
272 |
+
|
273 |
+
|
274 |
+
def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False):
|
275 |
+
def feat_prob_sum(feat_sum, prob_sum, shift_feat):
|
276 |
+
feat_sum += shift_feat[:, :-1, :, :]
|
277 |
+
prob_sum += shift_feat[:, -1:, :, :]
|
278 |
+
return feat_sum, prob_sum
|
279 |
+
|
280 |
+
b, _, h, w = input.shape
|
281 |
+
h_shift_unit = 1
|
282 |
+
w_shift_unit = 1
|
283 |
+
p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit)
|
284 |
+
feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) # b* (n+1) *h*w
|
285 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
286 |
+
send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:]
|
287 |
+
feat_sum = send_to_top_left[:, :-1, :, :].clone()
|
288 |
+
prob_sum = send_to_top_left[:, -1:, :, :].clone()
|
289 |
+
|
290 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
291 |
+
top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
|
292 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top)
|
293 |
+
|
294 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
295 |
+
top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit]
|
296 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right)
|
297 |
+
|
298 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
299 |
+
left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
|
300 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left)
|
301 |
+
|
302 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
303 |
+
center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit]
|
304 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center)
|
305 |
+
|
306 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
307 |
+
right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
|
308 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right)
|
309 |
+
|
310 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
311 |
+
bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:]
|
312 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left)
|
313 |
+
|
314 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
315 |
+
bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
|
316 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom)
|
317 |
+
|
318 |
+
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
|
319 |
+
bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit]
|
320 |
+
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right)
|
321 |
+
pooled_feat = feat_sum / (prob_sum + 1e-8)
|
322 |
+
if need_entry_prob:
|
323 |
+
return pooled_feat, prob_sum
|
324 |
+
return pooled_feat
|
325 |
+
|
326 |
+
|
327 |
+
def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25):
|
328 |
+
N,C,H,W = affinity_map.shape
|
329 |
+
device = affinity_map.device
|
330 |
+
assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True)
|
331 |
+
assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device))
|
332 |
+
## one_map = (N,1,H,W)
|
333 |
+
_, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True)
|
334 |
+
#all_one_map = torch.ones(elem_num_maps.shape).cuda()
|
335 |
+
#empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map)
|
336 |
+
return elem_num_maps
|
337 |
+
|
338 |
+
|
339 |
+
def upfeat(input, prob, up_h=2, up_w=2):
|
340 |
+
# input b*n*H*W downsampled
|
341 |
+
# prob b*9*h*w
|
342 |
+
b, c, h, w = input.shape
|
343 |
+
|
344 |
+
h_shift = 1
|
345 |
+
w_shift = 1
|
346 |
+
|
347 |
+
p2d = (w_shift, w_shift, h_shift, h_shift)
|
348 |
+
feat_pd = F.pad(input, p2d, mode='constant', value=0)
|
349 |
+
|
350 |
+
gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest')
|
351 |
+
feat_sum = gt_frm_top_left * prob.narrow(1,0,1)
|
352 |
+
|
353 |
+
top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
|
354 |
+
feat_sum += top * prob.narrow(1, 1, 1)
|
355 |
+
|
356 |
+
top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
|
357 |
+
feat_sum += top_right * prob.narrow(1,2,1)
|
358 |
+
|
359 |
+
left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
|
360 |
+
feat_sum += left * prob.narrow(1, 3, 1)
|
361 |
+
|
362 |
+
center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest')
|
363 |
+
feat_sum += center * prob.narrow(1, 4, 1)
|
364 |
+
|
365 |
+
right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
|
366 |
+
feat_sum += right * prob.narrow(1, 5, 1)
|
367 |
+
|
368 |
+
bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
|
369 |
+
feat_sum += bottom_left * prob.narrow(1, 6, 1)
|
370 |
+
|
371 |
+
bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
|
372 |
+
feat_sum += bottom * prob.narrow(1, 7, 1)
|
373 |
+
|
374 |
+
bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
|
375 |
+
feat_sum += bottom_right * prob.narrow(1, 8, 1)
|
376 |
+
|
377 |
+
return feat_sum
|
378 |
+
|
379 |
+
|
380 |
+
def suck_and_spread(self, base_maps, seg_layers):
|
381 |
+
N,S,H,W = seg_layers.shape
|
382 |
+
base_maps = base_maps.unsqueeze(1)
|
383 |
+
seg_layers = seg_layers.unsqueeze(2)
|
384 |
+
## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W)
|
385 |
+
mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True))
|
386 |
+
## normalized to be sum one
|
387 |
+
weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True))
|
388 |
+
## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W)
|
389 |
+
recon_maps = mean_val_layers * weight_layers
|
390 |
+
return recon_maps.sum(dim=1)
|
391 |
+
|
392 |
+
|
393 |
+
#! copy from Richard Zhang [SIGGRAPH2017]
|
394 |
+
# RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478]
|
395 |
+
#------------------------------------------------------------------------------
|
396 |
+
def rgb2xyz(rgb): # rgb from [0,1]
|
397 |
+
# xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
|
398 |
+
# [0.212671, 0.715160, 0.072169],
|
399 |
+
# [0.019334, 0.119193, 0.950227]])
|
400 |
+
mask = (rgb > .04045).type(torch.FloatTensor)
|
401 |
+
if(rgb.is_cuda):
|
402 |
+
mask = mask.cuda()
|
403 |
+
rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask)
|
404 |
+
x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:]
|
405 |
+
y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:]
|
406 |
+
z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:]
|
407 |
+
out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1)
|
408 |
+
return out
|
409 |
+
|
410 |
+
def xyz2rgb(xyz):
|
411 |
+
# array([[ 3.24048134, -1.53715152, -0.49853633],
|
412 |
+
# [-0.96925495, 1.87599 , 0.04155593],
|
413 |
+
# [ 0.05564664, -0.20404134, 1.05731107]])
|
414 |
+
r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:]
|
415 |
+
g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:]
|
416 |
+
b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:]
|
417 |
+
rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1)
|
418 |
+
#! sometimes reaches a small negative number, which causes NaNs
|
419 |
+
rgb = torch.max(rgb,torch.zeros_like(rgb))
|
420 |
+
mask = (rgb > .0031308).type(torch.FloatTensor)
|
421 |
+
if(rgb.is_cuda):
|
422 |
+
mask = mask.cuda()
|
423 |
+
rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask)
|
424 |
+
return rgb
|
425 |
+
|
426 |
+
def xyz2lab(xyz):
|
427 |
+
# 0.95047, 1., 1.08883 # white
|
428 |
+
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
|
429 |
+
if(xyz.is_cuda):
|
430 |
+
sc = sc.cuda()
|
431 |
+
xyz_scale = xyz/sc
|
432 |
+
mask = (xyz_scale > .008856).type(torch.FloatTensor)
|
433 |
+
if(xyz_scale.is_cuda):
|
434 |
+
mask = mask.cuda()
|
435 |
+
xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask)
|
436 |
+
L = 116.*xyz_int[:,1,:,:]-16.
|
437 |
+
a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:])
|
438 |
+
b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:])
|
439 |
+
out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1)
|
440 |
+
return out
|
441 |
+
|
442 |
+
def lab2xyz(lab):
|
443 |
+
y_int = (lab[:,0,:,:]+16.)/116.
|
444 |
+
x_int = (lab[:,1,:,:]/500.) + y_int
|
445 |
+
z_int = y_int - (lab[:,2,:,:]/200.)
|
446 |
+
if(z_int.is_cuda):
|
447 |
+
z_int = torch.max(torch.Tensor((0,)).cuda(), z_int)
|
448 |
+
else:
|
449 |
+
z_int = torch.max(torch.Tensor((0,)), z_int)
|
450 |
+
out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1)
|
451 |
+
mask = (out > .2068966).type(torch.FloatTensor)
|
452 |
+
if(out.is_cuda):
|
453 |
+
mask = mask.cuda()
|
454 |
+
out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask)
|
455 |
+
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
|
456 |
+
sc = sc.to(out.device)
|
457 |
+
out = out*sc
|
458 |
+
return out
|
459 |
+
|
460 |
+
def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110):
|
461 |
+
#! input rgb: [0,1]
|
462 |
+
#! output lab: [-1,1]
|
463 |
+
lab = xyz2lab(rgb2xyz(rgb))
|
464 |
+
l_rs = (lab[:,[0],:,:]-l_mean) / l_norm
|
465 |
+
ab_rs = lab[:,1:,:,:] / ab_norm
|
466 |
+
out = torch.cat((l_rs,ab_rs),dim=1)
|
467 |
+
return out
|
468 |
+
|
469 |
+
def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110):
|
470 |
+
#! input lab: [-1,1]
|
471 |
+
#! output rgb: [0,1]
|
472 |
+
l_ = lab_rs[:,[0],:,:] * l_norm + l_mean
|
473 |
+
ab = lab_rs[:,1:,:,:] * ab_norm
|
474 |
+
lab = torch.cat((l_,ab), dim=1)
|
475 |
+
out = xyz2rgb(lab2xyz(lab))
|
476 |
+
return out
|
477 |
+
|
478 |
+
|
479 |
+
if __name__ == '__main__':
|
480 |
+
minL, minA, minB = 999., 999., 999.
|
481 |
+
maxL, maxA, maxB = 0., 0., 0.
|
482 |
+
for r in range(256):
|
483 |
+
print('h',r)
|
484 |
+
for g in range(256):
|
485 |
+
for b in range(256):
|
486 |
+
rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0
|
487 |
+
#lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
|
488 |
+
rgb = torch.from_numpy(rgb.transpose((2, 0, 1)))
|
489 |
+
rgb = rgb.reshape(1,3,1,1)
|
490 |
+
lab = rgb2lab(rgb)
|
491 |
+
lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50
|
492 |
+
lab[:,1:,:,:] = lab[:,1:,:,:] * 110
|
493 |
+
lab = lab.squeeze()
|
494 |
+
lab_float = lab.numpy()
|
495 |
+
#print('zhang vs. cv2:', lab_float, lab_img.squeeze())
|
496 |
+
minL = min(lab_float[0], minL)
|
497 |
+
minA = min(lab_float[1], minA)
|
498 |
+
minB = min(lab_float[2], minB)
|
499 |
+
maxL = max(lab_float[0], maxL)
|
500 |
+
maxA = max(lab_float[1], maxA)
|
501 |
+
maxB = max(lab_float[2], maxB)
|
502 |
+
print('L:', minL, maxL)
|
503 |
+
print('A:', minA, maxA)
|
504 |
+
print('B:', minB, maxB)
|