doevent commited on
Commit
24685d9
·
1 Parent(s): 43b6a0a

Upload models/basic.py

Browse files
Files changed (1) hide show
  1. models/basic.py +504 -0
models/basic.py ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import torch.nn.utils.spectral_norm as spectral_norm
6
+ from torch.autograd import Function
7
+ from utils import util, cielab
8
+ import cv2, math, random
9
+
10
+ def tensor2array(tensors):
11
+ arrays = tensors.detach().to("cpu").numpy()
12
+ return np.transpose(arrays, (0, 2, 3, 1))
13
+
14
+
15
+ def rgb2gray(color_batch):
16
+ #! gray = 0.299*R+0.587*G+0.114*B
17
+ gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114
18
+ gray_batch = gray_batch.unsqueeze_(1)
19
+ return gray_batch
20
+
21
+
22
+ def getParamsAmount(model):
23
+ params = list(model.parameters())
24
+ count = 0
25
+ for var in params:
26
+ l = 1
27
+ for j in var.size():
28
+ l *= j
29
+ count += l
30
+ return count
31
+
32
+
33
+ def checkAverageGradient(model):
34
+ meanGrad, cnt = 0.0, 0
35
+ for name, parms in model.named_parameters():
36
+ if parms.requires_grad:
37
+ meanGrad += torch.mean(torch.abs(parms.grad))
38
+ cnt += 1
39
+ return meanGrad.item() / cnt
40
+
41
+
42
+ def get_random_mask(N, H, W, minNum, maxNum):
43
+ binary_maps = np.zeros((N, H*W), np.float32)
44
+ for i in range(N):
45
+ locs = random.sample(range(0, H*W), random.randint(minNum,maxNum))
46
+ binary_maps[i, locs] = 1
47
+ return binary_maps.reshape(N,1,H,W)
48
+
49
+
50
+ def io_user_control(hint_mask, spix_colors, output=True):
51
+ cache_dir = '/apdcephfs/private_richardxia'
52
+ if output:
53
+ print('--- data saving')
54
+ mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0
55
+ util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1)
56
+ fake_gray = torch.zeros_like(spix_colors[:,[0],:,:])
57
+ spix_labs = torch.cat((fake_gray,spix_colors), dim=1)
58
+ spix_imgs = tensor2array(spix_labs)
59
+ util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1)
60
+ return hint_mask, spix_colors
61
+ else:
62
+ print('--- data loading')
63
+ mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE)
64
+ mask_img = np.expand_dims(mask_img, axis=2) / 255.
65
+ hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1)))
66
+ hint_mask = hint_mask.unsqueeze(0).cuda()
67
+ bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR)
68
+ rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
69
+ rgb_img = np.array(rgb_img / 255., np.float32)
70
+ lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
71
+ lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
72
+ ab_chans = lab_img[1:3,:,:] / 110.
73
+ spix_colors = ab_chans.unsqueeze(0).cuda()
74
+ return hint_mask.float(), spix_colors.float()
75
+
76
+
77
+ class Quantize(Function):
78
+ @staticmethod
79
+ def forward(ctx, x):
80
+ ctx.save_for_backward(x)
81
+ y = x.round()
82
+ return y
83
+
84
+ @staticmethod
85
+ def backward(ctx, grad_output):
86
+ """
87
+ In the backward pass we receive a Tensor containing the gradient of the loss
88
+ with respect to the output, and we need to compute the gradient of the loss
89
+ with respect to the input.
90
+ """
91
+ inputX = ctx.saved_tensors
92
+ return grad_output
93
+
94
+
95
+ def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None):
96
+ ## to highlight the seeds with 1-pixel margin
97
+ binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps))
98
+ center_mask = dilate_seeds(binary_map, kernel_size=kernel_size)
99
+ margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask
100
+ ## drop colors
101
+ dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2)
102
+ marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays)
103
+ if base_ABs is None:
104
+ marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs)
105
+ else:
106
+ marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs)
107
+ marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs)
108
+ return torch.cat((marked_grays,marked_ABs), dim=1)
109
+
110
+ def dilate_seeds(gate_maps, kernel_size=3):
111
+ N,C,H,W = gate_maps.shape
112
+ input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2)
113
+ #! Notice: differentiable? just like max pooling?
114
+ dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True)
115
+ output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1)
116
+ #print('-------', input_unf.shape)
117
+ return output
118
+
119
+
120
+ class RebalanceLoss(Function):
121
+ @staticmethod
122
+ def forward(ctx, data_input, weights):
123
+ ctx.save_for_backward(weights)
124
+ return data_input.clone()
125
+
126
+ @staticmethod
127
+ def backward(ctx, grad_output):
128
+ weights, = ctx.saved_tensors
129
+ # reweigh gradient pixelwise so that rare colors get a chance to
130
+ # contribute
131
+ grad_input = grad_output * weights
132
+ # second return value is None since we are not interested in the
133
+ # gradient with respect to the weights
134
+ return grad_input, None
135
+
136
+
137
+ class GetClassWeights:
138
+ def __init__(self, cielab, lambda_=0.5, device='cuda'):
139
+ prior = torch.from_numpy(cielab.gamut.prior).cuda()
140
+ uniform = torch.zeros_like(prior)
141
+ uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform)
142
+ self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform)
143
+ self.weights /= torch.sum(prior * self.weights)
144
+
145
+ def __call__(self, ab_actual):
146
+ return self.weights[ab_actual.argmax(dim=1, keepdim=True)]
147
+
148
+
149
+ class ColorLabel:
150
+ def __init__(self, lambda_=0.5, device='cuda'):
151
+ self.cielab = cielab.CIELAB()
152
+ self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device)
153
+ prior = torch.from_numpy(self.cielab.gamut.prior).to(device)
154
+ uniform = torch.zeros_like(prior)
155
+ uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform)
156
+ self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform)
157
+ self.weights /= torch.sum(prior * self.weights)
158
+
159
+ def visualize_label(self, step=3):
160
+ height, width = 200, 313*step
161
+ label_lab = np.ones((height,width,3), np.float32)
162
+ for x in range(313):
163
+ ab = self.cielab.q_to_ab[x,:]
164
+ label_lab[:,step*x:step*(x+1),1:] = ab / 110.
165
+ label_lab[:,:,0] = np.zeros((height,width), np.float32)
166
+ return label_lab
167
+
168
+ @staticmethod
169
+ def _gauss_eval(x, mu, sigma):
170
+ norm = 1 / (2 * math.pi * sigma)
171
+ return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2))
172
+
173
+ def get_classweights(self, batch_gt_indx):
174
+ #return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)]
175
+ return self.weights[batch_gt_indx]
176
+
177
+ def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0):
178
+ batch_ab = batch_ab * 110.
179
+ n, _, h, w = batch_ab.shape
180
+ m = n * h * w
181
+ # find nearest neighbours
182
+ ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w)
183
+ cdist = torch.cdist(self.q_to_ab, ab_.t())
184
+ nns = cdist.argsort(dim=0)[:neighbours, :]
185
+ # gaussian weighting
186
+ nn_gauss = batch_ab.new_zeros(neighbours, m)
187
+ for i in range(neighbours):
188
+ nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma)
189
+ nn_gauss /= nn_gauss.sum(dim=0, keepdim=True)
190
+ # expand
191
+ bins = self.cielab.gamut.EXPECTED_SIZE
192
+ q = batch_ab.new_zeros(bins, m)
193
+ q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss
194
+ return q.reshape(bins, n, h, w).permute(1, 0, 2, 3)
195
+
196
+ def decode_ind2ab(self, batch_q, T=0.38):
197
+ _, _, h, w = batch_q.shape
198
+ batch_q = F.softmax(batch_q, dim=1)
199
+ if T%1 == 0:
200
+ # take the T-st probable index
201
+ sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True)
202
+ #print('checking [index]', batch_indexs[:,0:5,5,5])
203
+ #print('checking [probs]', sorted_probs[:,0:5,5,5])
204
+ batch_indexs = batch_indexs[:,T:T+1,:,:]
205
+ #batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:])
206
+ ab = torch.stack([
207
+ self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1)
208
+ for q_i in batch_indexs])
209
+ else:
210
+ batch_q = torch.exp(batch_q / T)
211
+ batch_q /= batch_q.sum(dim=1, keepdim=True)
212
+ a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,)))
213
+ a = a.unsqueeze(dim=1)
214
+ b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,)))
215
+ b = b.unsqueeze(dim=1)
216
+ ab = torch.cat((a, b), dim=1)
217
+ ab = ab / 110.
218
+ return ab.type(batch_q.dtype)
219
+
220
+
221
+ def init_spixel_grid(img_height, img_width, spixel_size=16):
222
+ # get spixel id for the final assignment
223
+ n_spixl_h = int(np.floor(img_height/spixel_size))
224
+ n_spixl_w = int(np.floor(img_width/spixel_size))
225
+ spixel_height = int(img_height / (1. * n_spixl_h))
226
+ spixel_width = int(img_width / (1. * n_spixl_w))
227
+ spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w)))
228
+
229
+ def shift9pos(input, h_shift_unit=1, w_shift_unit=1):
230
+ # input should be padding as (c, 1+ height+1, 1+width+1)
231
+ input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge')
232
+ input_pd = np.expand_dims(input_pd, axis=0)
233
+ # assign to ...
234
+ top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
235
+ bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
236
+ left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
237
+ right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
238
+ center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit]
239
+ bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:]
240
+ bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit]
241
+ top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:]
242
+ top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit]
243
+ shift_tensor = np.concatenate([ top_left, top, top_right,
244
+ left, center, right,
245
+ bottom_left, bottom, bottom_right], axis=0)
246
+ return shift_tensor
247
+
248
+ spix_idx_tensor_ = shift9pos(spix_values)
249
+ spix_idx_tensor = np.repeat(
250
+ np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2)
251
+ spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float)
252
+
253
+ #! pixel coord feature maps
254
+ all_h_coords = np.arange(0, img_height, 1)
255
+ all_w_coords = np.arange(0, img_width, 1)
256
+ curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij'))
257
+ coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]])
258
+ coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float)
259
+
260
+ return spixel_id_tensor, coord_feat_tensor
261
+
262
+
263
+ def split_spixels(assign_map, spixel_ids):
264
+ N,C,H,W = assign_map.shape
265
+ spixel_id_map = spixel_ids.expand(N,-1,-1,-1)
266
+ assig_max,_ = torch.max(assign_map, dim=1, keepdim=True)
267
+ assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda())
268
+ ## winner take all
269
+ new_spixl_map_ = spixel_id_map * assignment_
270
+ new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int)
271
+ return new_spixl_map
272
+
273
+
274
+ def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False):
275
+ def feat_prob_sum(feat_sum, prob_sum, shift_feat):
276
+ feat_sum += shift_feat[:, :-1, :, :]
277
+ prob_sum += shift_feat[:, -1:, :, :]
278
+ return feat_sum, prob_sum
279
+
280
+ b, _, h, w = input.shape
281
+ h_shift_unit = 1
282
+ w_shift_unit = 1
283
+ p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit)
284
+ feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) # b* (n+1) *h*w
285
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
286
+ send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:]
287
+ feat_sum = send_to_top_left[:, :-1, :, :].clone()
288
+ prob_sum = send_to_top_left[:, -1:, :, :].clone()
289
+
290
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
291
+ top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
292
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top)
293
+
294
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
295
+ top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit]
296
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right)
297
+
298
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
299
+ left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
300
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left)
301
+
302
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
303
+ center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit]
304
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center)
305
+
306
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
307
+ right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
308
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right)
309
+
310
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
311
+ bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:]
312
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left)
313
+
314
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
315
+ bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
316
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom)
317
+
318
+ prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
319
+ bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit]
320
+ feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right)
321
+ pooled_feat = feat_sum / (prob_sum + 1e-8)
322
+ if need_entry_prob:
323
+ return pooled_feat, prob_sum
324
+ return pooled_feat
325
+
326
+
327
+ def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25):
328
+ N,C,H,W = affinity_map.shape
329
+ device = affinity_map.device
330
+ assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True)
331
+ assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device))
332
+ ## one_map = (N,1,H,W)
333
+ _, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True)
334
+ #all_one_map = torch.ones(elem_num_maps.shape).cuda()
335
+ #empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map)
336
+ return elem_num_maps
337
+
338
+
339
+ def upfeat(input, prob, up_h=2, up_w=2):
340
+ # input b*n*H*W downsampled
341
+ # prob b*9*h*w
342
+ b, c, h, w = input.shape
343
+
344
+ h_shift = 1
345
+ w_shift = 1
346
+
347
+ p2d = (w_shift, w_shift, h_shift, h_shift)
348
+ feat_pd = F.pad(input, p2d, mode='constant', value=0)
349
+
350
+ gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest')
351
+ feat_sum = gt_frm_top_left * prob.narrow(1,0,1)
352
+
353
+ top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
354
+ feat_sum += top * prob.narrow(1, 1, 1)
355
+
356
+ top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
357
+ feat_sum += top_right * prob.narrow(1,2,1)
358
+
359
+ left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
360
+ feat_sum += left * prob.narrow(1, 3, 1)
361
+
362
+ center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest')
363
+ feat_sum += center * prob.narrow(1, 4, 1)
364
+
365
+ right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
366
+ feat_sum += right * prob.narrow(1, 5, 1)
367
+
368
+ bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
369
+ feat_sum += bottom_left * prob.narrow(1, 6, 1)
370
+
371
+ bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
372
+ feat_sum += bottom * prob.narrow(1, 7, 1)
373
+
374
+ bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
375
+ feat_sum += bottom_right * prob.narrow(1, 8, 1)
376
+
377
+ return feat_sum
378
+
379
+
380
+ def suck_and_spread(self, base_maps, seg_layers):
381
+ N,S,H,W = seg_layers.shape
382
+ base_maps = base_maps.unsqueeze(1)
383
+ seg_layers = seg_layers.unsqueeze(2)
384
+ ## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W)
385
+ mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True))
386
+ ## normalized to be sum one
387
+ weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True))
388
+ ## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W)
389
+ recon_maps = mean_val_layers * weight_layers
390
+ return recon_maps.sum(dim=1)
391
+
392
+
393
+ #! copy from Richard Zhang [SIGGRAPH2017]
394
+ # RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478]
395
+ #------------------------------------------------------------------------------
396
+ def rgb2xyz(rgb): # rgb from [0,1]
397
+ # xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
398
+ # [0.212671, 0.715160, 0.072169],
399
+ # [0.019334, 0.119193, 0.950227]])
400
+ mask = (rgb > .04045).type(torch.FloatTensor)
401
+ if(rgb.is_cuda):
402
+ mask = mask.cuda()
403
+ rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask)
404
+ x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:]
405
+ y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:]
406
+ z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:]
407
+ out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1)
408
+ return out
409
+
410
+ def xyz2rgb(xyz):
411
+ # array([[ 3.24048134, -1.53715152, -0.49853633],
412
+ # [-0.96925495, 1.87599 , 0.04155593],
413
+ # [ 0.05564664, -0.20404134, 1.05731107]])
414
+ r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:]
415
+ g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:]
416
+ b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:]
417
+ rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1)
418
+ #! sometimes reaches a small negative number, which causes NaNs
419
+ rgb = torch.max(rgb,torch.zeros_like(rgb))
420
+ mask = (rgb > .0031308).type(torch.FloatTensor)
421
+ if(rgb.is_cuda):
422
+ mask = mask.cuda()
423
+ rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask)
424
+ return rgb
425
+
426
+ def xyz2lab(xyz):
427
+ # 0.95047, 1., 1.08883 # white
428
+ sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
429
+ if(xyz.is_cuda):
430
+ sc = sc.cuda()
431
+ xyz_scale = xyz/sc
432
+ mask = (xyz_scale > .008856).type(torch.FloatTensor)
433
+ if(xyz_scale.is_cuda):
434
+ mask = mask.cuda()
435
+ xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask)
436
+ L = 116.*xyz_int[:,1,:,:]-16.
437
+ a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:])
438
+ b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:])
439
+ out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1)
440
+ return out
441
+
442
+ def lab2xyz(lab):
443
+ y_int = (lab[:,0,:,:]+16.)/116.
444
+ x_int = (lab[:,1,:,:]/500.) + y_int
445
+ z_int = y_int - (lab[:,2,:,:]/200.)
446
+ if(z_int.is_cuda):
447
+ z_int = torch.max(torch.Tensor((0,)).cuda(), z_int)
448
+ else:
449
+ z_int = torch.max(torch.Tensor((0,)), z_int)
450
+ out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1)
451
+ mask = (out > .2068966).type(torch.FloatTensor)
452
+ if(out.is_cuda):
453
+ mask = mask.cuda()
454
+ out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask)
455
+ sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
456
+ sc = sc.to(out.device)
457
+ out = out*sc
458
+ return out
459
+
460
+ def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110):
461
+ #! input rgb: [0,1]
462
+ #! output lab: [-1,1]
463
+ lab = xyz2lab(rgb2xyz(rgb))
464
+ l_rs = (lab[:,[0],:,:]-l_mean) / l_norm
465
+ ab_rs = lab[:,1:,:,:] / ab_norm
466
+ out = torch.cat((l_rs,ab_rs),dim=1)
467
+ return out
468
+
469
+ def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110):
470
+ #! input lab: [-1,1]
471
+ #! output rgb: [0,1]
472
+ l_ = lab_rs[:,[0],:,:] * l_norm + l_mean
473
+ ab = lab_rs[:,1:,:,:] * ab_norm
474
+ lab = torch.cat((l_,ab), dim=1)
475
+ out = xyz2rgb(lab2xyz(lab))
476
+ return out
477
+
478
+
479
+ if __name__ == '__main__':
480
+ minL, minA, minB = 999., 999., 999.
481
+ maxL, maxA, maxB = 0., 0., 0.
482
+ for r in range(256):
483
+ print('h',r)
484
+ for g in range(256):
485
+ for b in range(256):
486
+ rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0
487
+ #lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
488
+ rgb = torch.from_numpy(rgb.transpose((2, 0, 1)))
489
+ rgb = rgb.reshape(1,3,1,1)
490
+ lab = rgb2lab(rgb)
491
+ lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50
492
+ lab[:,1:,:,:] = lab[:,1:,:,:] * 110
493
+ lab = lab.squeeze()
494
+ lab_float = lab.numpy()
495
+ #print('zhang vs. cv2:', lab_float, lab_img.squeeze())
496
+ minL = min(lab_float[0], minL)
497
+ minA = min(lab_float[1], minA)
498
+ minB = min(lab_float[2], minB)
499
+ maxL = max(lab_float[0], maxL)
500
+ maxA = max(lab_float[1], maxA)
501
+ maxB = max(lab_float[2], maxB)
502
+ print('L:', minL, maxL)
503
+ print('A:', minA, maxA)
504
+ print('B:', minB, maxB)