Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import tifffile
|
|
| 3 |
import pydicom
|
| 4 |
from scipy.ndimage import zoom
|
| 5 |
import torch
|
| 6 |
-
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
|
@@ -20,18 +20,18 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
| 20 |
|
| 21 |
# Dati di esempio predefiniti
|
| 22 |
esempi = {
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
}
|
| 36 |
|
| 37 |
|
|
@@ -130,7 +130,7 @@ if st.session_state['step'] == 1:
|
|
| 130 |
# Breve descrizione del lavoro
|
| 131 |
st.markdown("""
|
| 132 |
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'>
|
| 133 |
-
This work introduces MedCoDi-M, a novel multi-prompt
|
| 134 |
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation.
|
| 135 |
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance.
|
| 136 |
</div>
|
|
@@ -141,7 +141,7 @@ if st.session_state['step'] == 1:
|
|
| 141 |
|
| 142 |
# Immagine con didascalia migliorata e con dimensione della caption aumentata
|
| 143 |
image_path = "./DEMO/Loghi/model_final.png" # Sostituisci con il percorso della tua immagine
|
| 144 |
-
st.image(image_path, caption='',
|
| 145 |
|
| 146 |
# Caption con dimensione del testo migliorata
|
| 147 |
st.markdown("""
|
|
@@ -163,15 +163,15 @@ if st.session_state['step'] == 1:
|
|
| 163 |
if st.session_state['step'] == 2:
|
| 164 |
# Opzioni disponibili
|
| 165 |
options = [
|
| 166 |
-
"
|
| 167 |
-
"
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
]
|
| 171 |
|
| 172 |
# Messaggio di selezione con dimensione aumentata
|
| 173 |
st.markdown(
|
| 174 |
-
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform
|
| 175 |
unsafe_allow_html=True)
|
| 176 |
|
| 177 |
# Aumentare la dimensione di "Please select an option:"
|
|
@@ -220,17 +220,17 @@ if st.session_state['step'] == 3:
|
|
| 220 |
unsafe_allow_html=True)
|
| 221 |
|
| 222 |
# Carica l'immagine frontale
|
| 223 |
-
if "
|
| 224 |
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
| 225 |
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"])
|
| 226 |
|
| 227 |
# Carica l'immagine laterale
|
| 228 |
-
if "
|
| 229 |
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
| 230 |
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"])
|
| 231 |
|
| 232 |
# Inserisci il report clinico
|
| 233 |
-
if "
|
| 234 |
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True)
|
| 235 |
st.session_state['report'] = st.text_area("", value=st.session_state['report'])
|
| 236 |
|
|
@@ -249,11 +249,11 @@ if st.session_state['step'] == 3:
|
|
| 249 |
with st.spinner("Preprocessing the data..."):
|
| 250 |
time.sleep(3)
|
| 251 |
# Controllo che i file necessari siano stati caricati
|
| 252 |
-
if "
|
| 253 |
st.error("Load the Frontal image.")
|
| 254 |
-
elif "
|
| 255 |
st.error("Load the Lateral image.")
|
| 256 |
-
elif "
|
| 257 |
st.error("Type the clinical report.")
|
| 258 |
else:
|
| 259 |
st.write(f"Execution of: {st.session_state['selected_option']}")
|
|
@@ -311,7 +311,7 @@ if st.session_state['step'] == 3:
|
|
| 311 |
if lateral.dtype != np.uint8:
|
| 312 |
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8)
|
| 313 |
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 314 |
-
lateral2 = Image.
|
| 315 |
st.write("Lateral Image loaded successfully!")
|
| 316 |
st.image(lateral2, caption="Lateral Image Loaded", use_column_width=True)
|
| 317 |
if st.session_state['report']:
|
|
@@ -319,20 +319,20 @@ if st.session_state['step'] == 3:
|
|
| 319 |
st.write(f"Loaded Report: {report}")
|
| 320 |
|
| 321 |
inputs = []
|
| 322 |
-
if "
|
| 323 |
inputs.append('frontal')
|
| 324 |
-
if "
|
| 325 |
inputs.append('lateral')
|
| 326 |
-
if "
|
| 327 |
inputs.append('text')
|
| 328 |
|
| 329 |
# Ora vediamo cosa c'è dopo la freccia
|
| 330 |
outputs = []
|
| 331 |
-
if "
|
| 332 |
outputs.append('frontal')
|
| 333 |
-
if "
|
| 334 |
outputs.append('lateral')
|
| 335 |
-
if "
|
| 336 |
outputs.append('text')
|
| 337 |
|
| 338 |
# Ultima cosa che va fatta è passare allo step 4, prima di farlo però, tutte le variabili che ci servono
|
|
@@ -383,20 +383,20 @@ if st.session_state['step'] == 5:
|
|
| 383 |
unsafe_allow_html=True)
|
| 384 |
|
| 385 |
inputs = []
|
| 386 |
-
if "
|
| 387 |
-
inputs.append('
|
| 388 |
-
if "
|
| 389 |
-
inputs.append('
|
| 390 |
-
if "
|
| 391 |
-
inputs.append('
|
| 392 |
|
| 393 |
outputs = []
|
| 394 |
-
if "
|
| 395 |
-
outputs.append('
|
| 396 |
-
if "
|
| 397 |
-
outputs.append('
|
| 398 |
-
if "
|
| 399 |
-
outputs.append('
|
| 400 |
|
| 401 |
esempio = esempi[st.session_state['selected_option']]
|
| 402 |
|
|
@@ -410,8 +410,8 @@ if st.session_state['step'] == 5:
|
|
| 410 |
|
| 411 |
for idx, inp in enumerate(inputs):
|
| 412 |
with input_cols[idx]:
|
| 413 |
-
if inp == '
|
| 414 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
| 415 |
print(path)
|
| 416 |
if path.endswith(".tiff"):
|
| 417 |
im = tifffile.imread(path)
|
|
@@ -419,16 +419,16 @@ if st.session_state['step'] == 5:
|
|
| 419 |
elif path.endswith(".png"):
|
| 420 |
im = Image.open(path)
|
| 421 |
st.image(im, caption="Frontal Image")
|
| 422 |
-
elif inp == '
|
| 423 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
| 424 |
if path.endswith(".tiff"):
|
| 425 |
im = tifffile.imread(path)
|
| 426 |
im = np.clip(im, 0, 1)
|
| 427 |
elif path.endswith(".png"):
|
| 428 |
im = Image.open(path)
|
| 429 |
st.image(im, caption="Lateral Image")
|
| 430 |
-
elif inp == '
|
| 431 |
-
st.write(f"Report: {esempio['
|
| 432 |
|
| 433 |
st.markdown(
|
| 434 |
"<h3 style='text-align: justify'><strong>OUTPUTS</strong></h3>",
|
|
@@ -439,8 +439,8 @@ if st.session_state['step'] == 5:
|
|
| 439 |
|
| 440 |
for idx, out in enumerate(outputs):
|
| 441 |
with output_cols[idx]:
|
| 442 |
-
if out == '
|
| 443 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
| 444 |
if path.endswith(".tiff"):
|
| 445 |
im = tifffile.imread(path)
|
| 446 |
# facciamo clamp tra 0 e 1
|
|
@@ -448,8 +448,8 @@ if st.session_state['step'] == 5:
|
|
| 448 |
elif path.endswith(".png"):
|
| 449 |
im = Image.open(path)
|
| 450 |
st.image(im, caption="Frontal Image")
|
| 451 |
-
elif out == '
|
| 452 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
| 453 |
if path.endswith(".tiff"):
|
| 454 |
im = tifffile.imread(path)
|
| 455 |
# facciamo clamp tra 0 e 1
|
|
@@ -457,8 +457,8 @@ if st.session_state['step'] == 5:
|
|
| 457 |
elif path.endswith(".png"):
|
| 458 |
im = Image.open(path)
|
| 459 |
st.image(im, caption="Lateral Image")
|
| 460 |
-
elif out == '
|
| 461 |
-
st.write(f"Report: {esempio['
|
| 462 |
|
| 463 |
# Pulsante per tornare all'inizio
|
| 464 |
if st.button("Return to the beginning"):
|
|
|
|
| 3 |
import pydicom
|
| 4 |
from scipy.ndimage import zoom
|
| 5 |
import torch
|
| 6 |
+
from core.models.dani_model import dani_model
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
|
|
|
| 20 |
|
| 21 |
# Dati di esempio predefiniti
|
| 22 |
esempi = {
|
| 23 |
+
"Frontal -> Lateral": {'Frontal': 'FtoL.png', 'Lateral': 'LfromF.png'},
|
| 24 |
+
"Frontal -> Report": {'Frontal': '31d9847f-987fcf63-704f7496-d2b21eb8-63cd973e.tiff', 'Report': 'Small bilateral pleural effusions, left greater than right.'},
|
| 25 |
+
"Frontal -> Lateral + Report": {'Frontal': '81bca127-0c416084-67f8033c-ecb26476-6d1ecf60.tiff', 'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'No acute intrathoracic process. Heart Size is normal. Lungs are clear. No pneumothorax'},
|
| 26 |
+
"Lateral -> Frontal": {'Lateral': 'LtoF.png', 'Frontal': 'FfromL.png'},
|
| 27 |
+
"Lateral -> Report": {'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'no acute cardiopulmonary process. if concern for injury persists, a dedicated rib series with markers would be necessary to ensure no rib fractures.'},
|
| 28 |
+
"Lateral -> Frontal + Report": {'Lateral': 'reald52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Frontal': 'ab37274f-b4c1fc04-e2ff24b4-4a130ba3-cd167968.tiff', 'Report': 'No acute intrathoracic process. If there is strong concern for rib fracture, a dedicated rib series may be performed.'},
|
| 29 |
+
"Report -> Frontal": {'Report': 'Left lung opacification which may reflect pneumonia superimposed on metastatic disease.', 'Frontal': '02aa804e-bde0afdd-112c0b34-7bc16630-4e384014.tiff'},
|
| 30 |
+
"Report -> Lateral": {'Report': 'Bilateral pleural effusions, cardiomegaly and mild edema suggest fluid overload.', 'Lateral': '489faba7-a9dc5f1d-fd7241d6-9638d855-eaa952b1.tiff'},
|
| 31 |
+
"Report -> Frontal + Lateral": {'Report': 'No acute intrathoracic process. The lungs are clean and heart is normal size.', 'Frontal': 'f27ba7cd-44486c2e-29f3e890-f2b9f94e-84110448.tiff', 'Lateral': 'b20c9570-de77944a-b8604ba0-73305a7b-d608a72b.tiff'},
|
| 32 |
+
"Frontal + Lateral -> Report": {'Frontal': '95856dd1-5878b5b1-9c104817-760c0122-6187946f.tiff', 'Lateral': '3723d912-71940d69-4fef2dd2-27af5a7b-127ba20c.tiff', 'Report': 'Opacities in the right upper or middle lobe, maybe early pneumonia.'},
|
| 33 |
+
"Frontal + Report -> Lateral": {'Frontal': 'e7f21453-7956d79a-44e44614-fae8ff16-d174d1a0.tiff', 'Report': 'No focal consolidation.', 'Lateral': '8037e6b9-06367464-a4ccd63a-5c5c5a81-ce3e7ffc.tiff'},
|
| 34 |
+
"Lateral + Report -> Frontal": {'Lateral': '02c66644-b1883a91-54aed0e7-62d25460-398f9865.tiff', 'Report': 'No evidence of acute cardiopulmonary process.', 'Frontal': 'b1f169f1-12177dd5-2fa1c4b1-7b816311-85d769e9.tiff'}
|
| 35 |
}
|
| 36 |
|
| 37 |
|
|
|
|
| 130 |
# Breve descrizione del lavoro
|
| 131 |
st.markdown("""
|
| 132 |
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'>
|
| 133 |
+
This work introduces MedCoDi-M, a novel multi-prompt foundation model for multi-modal medical data generation.
|
| 134 |
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation.
|
| 135 |
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance.
|
| 136 |
</div>
|
|
|
|
| 141 |
|
| 142 |
# Immagine con didascalia migliorata e con dimensione della caption aumentata
|
| 143 |
image_path = "./DEMO/Loghi/model_final.png" # Sostituisci con il percorso della tua immagine
|
| 144 |
+
st.image(image_path, caption='', use_container_width=True)
|
| 145 |
|
| 146 |
# Caption con dimensione del testo migliorata
|
| 147 |
st.markdown("""
|
|
|
|
| 163 |
if st.session_state['step'] == 2:
|
| 164 |
# Opzioni disponibili
|
| 165 |
options = [
|
| 166 |
+
"Frontal -> Lateral", "Frontal -> Report", "Frontal -> Lateral + Report",
|
| 167 |
+
"Lateral -> Frontal", "Lateral -> Report", "Lateral -> Frontal + Report",
|
| 168 |
+
"Report -> Frontal", "Report -> Lateral", "Report -> Frontal + Lateral",
|
| 169 |
+
"Frontal + Lateral -> Report", "Frontal + Report -> Lateral", "Lateral + Report -> Frontal"
|
| 170 |
]
|
| 171 |
|
| 172 |
# Messaggio di selezione con dimensione aumentata
|
| 173 |
st.markdown(
|
| 174 |
+
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform:</strong></h4>",
|
| 175 |
unsafe_allow_html=True)
|
| 176 |
|
| 177 |
# Aumentare la dimensione di "Please select an option:"
|
|
|
|
| 220 |
unsafe_allow_html=True)
|
| 221 |
|
| 222 |
# Carica l'immagine frontale
|
| 223 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
| 224 |
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
| 225 |
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"])
|
| 226 |
|
| 227 |
# Carica l'immagine laterale
|
| 228 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
| 229 |
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
| 230 |
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"])
|
| 231 |
|
| 232 |
# Inserisci il report clinico
|
| 233 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
| 234 |
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True)
|
| 235 |
st.session_state['report'] = st.text_area("", value=st.session_state['report'])
|
| 236 |
|
|
|
|
| 249 |
with st.spinner("Preprocessing the data..."):
|
| 250 |
time.sleep(3)
|
| 251 |
# Controllo che i file necessari siano stati caricati
|
| 252 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['frontal_file']:
|
| 253 |
st.error("Load the Frontal image.")
|
| 254 |
+
elif "Lateral" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['lateral_file']:
|
| 255 |
st.error("Load the Lateral image.")
|
| 256 |
+
elif "Report" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['report']:
|
| 257 |
st.error("Type the clinical report.")
|
| 258 |
else:
|
| 259 |
st.write(f"Execution of: {st.session_state['selected_option']}")
|
|
|
|
| 311 |
if lateral.dtype != np.uint8:
|
| 312 |
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8)
|
| 313 |
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 314 |
+
lateral2 = Image.Frontalmarray(lateral2)
|
| 315 |
st.write("Lateral Image loaded successfully!")
|
| 316 |
st.image(lateral2, caption="Lateral Image Loaded", use_column_width=True)
|
| 317 |
if st.session_state['report']:
|
|
|
|
| 319 |
st.write(f"Loaded Report: {report}")
|
| 320 |
|
| 321 |
inputs = []
|
| 322 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
| 323 |
inputs.append('frontal')
|
| 324 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
| 325 |
inputs.append('lateral')
|
| 326 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
| 327 |
inputs.append('text')
|
| 328 |
|
| 329 |
# Ora vediamo cosa c'è dopo la freccia
|
| 330 |
outputs = []
|
| 331 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[1]:
|
| 332 |
outputs.append('frontal')
|
| 333 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[1]:
|
| 334 |
outputs.append('lateral')
|
| 335 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[1]:
|
| 336 |
outputs.append('text')
|
| 337 |
|
| 338 |
# Ultima cosa che va fatta è passare allo step 4, prima di farlo però, tutte le variabili che ci servono
|
|
|
|
| 383 |
unsafe_allow_html=True)
|
| 384 |
|
| 385 |
inputs = []
|
| 386 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
| 387 |
+
inputs.append('Frontal')
|
| 388 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
| 389 |
+
inputs.append('Lateral')
|
| 390 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
| 391 |
+
inputs.append('Report')
|
| 392 |
|
| 393 |
outputs = []
|
| 394 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[1]:
|
| 395 |
+
outputs.append('Frontal')
|
| 396 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[1]:
|
| 397 |
+
outputs.append('Lateral')
|
| 398 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[1]:
|
| 399 |
+
outputs.append('Report')
|
| 400 |
|
| 401 |
esempio = esempi[st.session_state['selected_option']]
|
| 402 |
|
|
|
|
| 410 |
|
| 411 |
for idx, inp in enumerate(inputs):
|
| 412 |
with input_cols[idx]:
|
| 413 |
+
if inp == 'Frontal':
|
| 414 |
+
path = "./DEMO/ESEMPI/" + esempio['Frontal']
|
| 415 |
print(path)
|
| 416 |
if path.endswith(".tiff"):
|
| 417 |
im = tifffile.imread(path)
|
|
|
|
| 419 |
elif path.endswith(".png"):
|
| 420 |
im = Image.open(path)
|
| 421 |
st.image(im, caption="Frontal Image")
|
| 422 |
+
elif inp == 'Lateral':
|
| 423 |
+
path = "./DEMO/ESEMPI/" + esempio['Lateral']
|
| 424 |
if path.endswith(".tiff"):
|
| 425 |
im = tifffile.imread(path)
|
| 426 |
im = np.clip(im, 0, 1)
|
| 427 |
elif path.endswith(".png"):
|
| 428 |
im = Image.open(path)
|
| 429 |
st.image(im, caption="Lateral Image")
|
| 430 |
+
elif inp == 'Report':
|
| 431 |
+
st.write(f"Report: {esempio['Report']}")
|
| 432 |
|
| 433 |
st.markdown(
|
| 434 |
"<h3 style='text-align: justify'><strong>OUTPUTS</strong></h3>",
|
|
|
|
| 439 |
|
| 440 |
for idx, out in enumerate(outputs):
|
| 441 |
with output_cols[idx]:
|
| 442 |
+
if out == 'Frontal':
|
| 443 |
+
path = "./DEMO/ESEMPI/" + esempio['Frontal']
|
| 444 |
if path.endswith(".tiff"):
|
| 445 |
im = tifffile.imread(path)
|
| 446 |
# facciamo clamp tra 0 e 1
|
|
|
|
| 448 |
elif path.endswith(".png"):
|
| 449 |
im = Image.open(path)
|
| 450 |
st.image(im, caption="Frontal Image")
|
| 451 |
+
elif out == 'Lateral':
|
| 452 |
+
path = "./DEMO/ESEMPI/" + esempio['Lateral']
|
| 453 |
if path.endswith(".tiff"):
|
| 454 |
im = tifffile.imread(path)
|
| 455 |
# facciamo clamp tra 0 e 1
|
|
|
|
| 457 |
elif path.endswith(".png"):
|
| 458 |
im = Image.open(path)
|
| 459 |
st.image(im, caption="Lateral Image")
|
| 460 |
+
elif out == 'Report':
|
| 461 |
+
st.write(f"Report: {esempio['Report']}")
|
| 462 |
|
| 463 |
# Pulsante per tornare all'inizio
|
| 464 |
if st.button("Return to the beginning"):
|