import streamlit as st import pandas as pd from annotated_text import annotated_text import time from scripts.predict import InferenceHandler history_df = pd.DataFrame(data=[], columns=['Text', 'Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified']) rc = None @st.cache_data def load_inference_handler(api_token): try: return InferenceHandler(api_token) except: return None def extract_data(json_obj): row_data = [] row_data.append(json_obj['raw_text']) row_data.append(json_obj['text_sentiment']) cat_dict = json_obj['category_sentiments'] for cat in cat_dict.keys(): raw_val = cat_dict[cat] val = f'{raw_val * 100: .2f}%' if raw_val is not None else 'N/A' row_data.append(val) return row_data def load_history(): for result in st.session_state.results: history_df.loc[len(history_df)] = extract_data(result) def output_results(res): label_dict = { 'Gender': '#4A90E2', 'Race': '#E67E22', 'Sexuality': '#3B9C5A', 'Disability': '#8B5E3C', 'Religion': '#A347BA', 'Unspecified': '#A0A0A0' } with rc: st.markdown('### Results') with st.container(border=True): at_list = [] if res['numerical_sentiment'] == 1: for entry in res['category_sentiments'].keys(): val = res['category_sentiments'][entry] if val > 0.0: perc = val * 100 at_list.append((entry, f'{perc:.2f}%', label_dict[entry])) st.markdown(f"#### Text - *\"{res['raw_text']}\"*") st.markdown(f"#### Classification - {':red' if res['numerical_sentiment'] == 1 else ':green'}[{res['text_sentiment']}]") if len(at_list) > 0: annotated_text(at_list) @st.cache_data def analyze_text(text): st.write(f'Text: {text}') if ih: res = None with rc: with st.spinner("Processing...", show_time=True) as spnr: time.sleep(5) res = ih.classify_text(text) del spnr if res is not None: st.session_state.results.append(res) history_df.loc[-1] = extract_data(res) output_results(res) st.title('NLPinitiative Text Classifier') st.sidebar.write("") API_KEY = st.sidebar.text_input( "Enter your HuggingFace API Token", help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens", type="password", ) ih = load_inference_handler(API_KEY) tab1, tab2 = st.tabs(['Classifier', 'About This App']) if "results" not in st.session_state: st.session_state.results = [] load_history() with tab1: "Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory." hist_container = st.container() hist_expander = hist_container.expander('History') rc = st.container() text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True) with text_form: entry = None text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False) form_btn = st.form_submit_button('submit', disabled=True if ih is None else False) if form_btn and text_area is not None and len(text_area) > 0: analyze_text(text_area) with hist_expander: st.dataframe(history_df, hide_index=True) with tab2: st.markdown( """The NLPinitiative Discriminatory Text Classifier is an advanced natural language processing tool designed to detect and flag potentially discriminatory or harmful language. By analyzing text for biased, offensive, or exclusionary content, this classifier helps promote more inclusive and respectful communication. Simply enter your text below, and the model will assess it based on linguistic patterns and context. While the tool provides valuable insights, we encourage users to review flagged content thoughtfully and consider context when interpreting results.""" )