File size: 4,211 Bytes
120f3a5 377b74f a189dd1 5e9bb68 82221ca 120f3a5 377b74f a189dd1 aa4fbce 377b74f 5e9bb68 377b74f 5e9bb68 377b74f 5e9bb68 82221ca 5e9bb68 82221ca 5e9bb68 a189dd1 5e9bb68 aa4fbce a189dd1 5e9bb68 377b74f a189dd1 aa4fbce a189dd1 377b74f a189dd1 aa4fbce a189dd1 377b74f aa4fbce a189dd1 aa4fbce 377b74f a189dd1 aa4fbce 377b74f 46e80bf 5e9bb68 377b74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import streamlit as st
import pandas as pd
from annotated_text import annotated_text
import time
from scripts.predict import InferenceHandler
history_df = pd.DataFrame(data=[], columns=['Text', 'Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified'])
rc = None
@st.cache_data
def load_inference_handler(api_token):
try:
return InferenceHandler(api_token)
except:
return None
def extract_data(json_obj):
row_data = []
row_data.append(json_obj['raw_text'])
row_data.append(json_obj['text_sentiment'])
cat_dict = json_obj['category_sentiments']
for cat in cat_dict.keys():
raw_val = cat_dict[cat]
val = f'{raw_val * 100: .2f}%' if raw_val is not None else 'N/A'
row_data.append(val)
return row_data
def load_history():
for result in st.session_state.results:
history_df.loc[len(history_df)] = extract_data(result)
def output_results(res):
label_dict = {
'Gender': '#4A90E2',
'Race': '#E67E22',
'Sexuality': '#3B9C5A',
'Disability': '#8B5E3C',
'Religion': '#A347BA',
'Unspecified': '#A0A0A0'
}
with rc:
st.markdown('### Results')
with st.container(border=True):
at_list = []
if res['numerical_sentiment'] == 1:
for entry in res['category_sentiments'].keys():
val = res['category_sentiments'][entry]
if val > 0.0:
perc = val * 100
at_list.append((entry, f'{perc:.2f}%', label_dict[entry]))
st.markdown(f"#### Text - *\"{res['raw_text']}\"*")
st.markdown(f"#### Classification - {':red' if res['numerical_sentiment'] == 1 else ':green'}[{res['text_sentiment']}]")
if len(at_list) > 0:
annotated_text(at_list)
@st.cache_data
def analyze_text(text):
st.write(f'Text: {text}')
if ih:
res = None
with rc:
with st.spinner("Processing...", show_time=True) as spnr:
time.sleep(5)
res = ih.classify_text(text)
del spnr
if res is not None:
st.session_state.results.append(res)
history_df.loc[-1] = extract_data(res)
output_results(res)
st.title('NLPinitiative Text Classifier')
st.sidebar.write("")
API_KEY = st.sidebar.text_input(
"Enter your HuggingFace API Token",
help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens",
type="password",
)
ih = load_inference_handler(API_KEY)
tab1, tab2 = st.tabs(['Classifier', 'About This App'])
if "results" not in st.session_state:
st.session_state.results = []
load_history()
with tab1:
"Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory."
hist_container = st.container()
hist_expander = hist_container.expander('History')
rc = st.container()
text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True)
with text_form:
entry = None
text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False)
form_btn = st.form_submit_button('submit', disabled=True if ih is None else False)
if form_btn and text_area is not None and len(text_area) > 0:
analyze_text(text_area)
with hist_expander:
st.dataframe(history_df, hide_index=True)
with tab2:
st.markdown(
"""The NLPinitiative Discriminatory Text Classifier is an advanced
natural language processing tool designed to detect and flag potentially
discriminatory or harmful language. By analyzing text for biased, offensive,
or exclusionary content, this classifier helps promote more inclusive and
respectful communication. Simply enter your text below, and the model will
assess it based on linguistic patterns and context. While the tool provides
valuable insights, we encourage users to review flagged content thoughtfully
and consider context when interpreting results."""
) |