Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
from gtts import gTTS
|
4 |
+
|
5 |
+
# Load the Whisper model for speech-to-text
|
6 |
+
pipe = pipeline(model="openai/whisper-small")
|
7 |
+
|
8 |
+
# Load the text generation model
|
9 |
+
text_pipe = pipeline("text2text-generation", model="google/byt5-small")
|
10 |
+
|
11 |
+
def transcribe(audio):
|
12 |
+
# Transcribe the audio to text
|
13 |
+
text = pipe(audio)["text"]
|
14 |
+
|
15 |
+
# Generate a response from the transcribed text
|
16 |
+
lm_response = text_pipe(text)[0]["generated_text"]
|
17 |
+
|
18 |
+
# Convert the response text to speech
|
19 |
+
tts = gTTS(lm_response, lang='ko')
|
20 |
+
|
21 |
+
# Save the generated audio
|
22 |
+
out_audio = "output_audio.mp3"
|
23 |
+
tts.save(out_audio)
|
24 |
+
|
25 |
+
return out_audio
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=transcribe,
|
30 |
+
inputs=gr.Audio(type="filepath"),
|
31 |
+
outputs=gr.Audio(type="filepath"),
|
32 |
+
title="Whisper Small Glaswegian",
|
33 |
+
description="Realtime demo for Glaswegian speech recognition using a fine-tuned Whisper small model."
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the interface
|
37 |
+
iface.launch(share=True)
|