Spaces:
Sleeping
Sleeping
File size: 950 Bytes
c6e8353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import streamlit as st
from st_audiorec import st_audiorec
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
processor = AutoProcessor.from_pretrained("openai/whisper-small")
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-small")
def transcribe(audio):
text = processor.batch_decode(model.generate(processor(audio), num_beams=4), skip_special_tokens=True)
return text
wav_audio_data = st_audiorec()
if wav_audio_data is not None:
# st.audio(wav_audio_data, format='audio/wav')
st.write("Transcription:")
st.write(transcribe(wav_audio_data))
# Set up the Streamlit app
st.title("Glaswegian Transcription with Whisper")
api_key = st.sidebar.text_input("Enter your API key")
# Check if API key is provided
if api_key:
st.write("API key:", api_key)
# Add your code here to use the Whisper model for audio transcription
else:
st.warning("Please enter your API key in the sidebar.") |