Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import numpy as np | |
import gradio as gr | |
from torch import nn | |
from gradio import components | |
from PIL import Image | |
class BrainTumorClassifier(nn.Module): | |
def __init__(self, num_classes): | |
super(BrainTumorClassifier, self).__init__() | |
self.features = nn.Sequential( | |
nn.Conv2d(3, 20, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(20, 32, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2) | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(32 * 56 * 56, 128), # Adjust input size based on image size | |
nn.ReLU(), | |
nn.Linear(128, num_classes) | |
) | |
def forward(self, x): | |
x = self.features(x) | |
x = x.view(-1, 32 * 56 * 56) | |
x = self.classifier(x) | |
return x | |
def predict(image): | |
image = Image.fromarray(np.uint8(image)).convert('RGB') | |
## give the weights trained | |
model_path = 'cnn_tumorbrain_classifier_self.pth' | |
model_load = BrainTumorClassifier(4) | |
model_load.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
## put the model in evaluation mode | |
model_load.eval() | |
transform_pipeline = transforms.Compose([ | |
transforms.Resize((224,224)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)) | |
]) | |
## transform the img like the training image | |
input_img = transform_pipeline(image).unsqueeze(0) | |
# input_img | |
## define the label by index | |
class_to_label = {0: 'glioma', 1: 'meningioma', 2: 'notumor', 3: 'pituitary'} | |
## run the model | |
with torch.no_grad(): | |
output = model_load(input_img) | |
## convert to the softmax for getting percent each label | |
probabilities = F.softmax(output, dim=1) | |
## get predicted label with highest value | |
_, predicted_label = torch.max(probabilities,1) | |
# confidence_percent = probabilities[0].tolist()[predicted_label.item()] | |
conf, _ = torch.max(probabilities, 1) | |
result = "{}, with confidence level in {}%".format(class_to_label[predicted_label.item()], conf.item()*100) | |
return result | |
iface = gr.Interface(fn=predict, | |
inputs=gr.Image(), | |
outputs="textbox") | |
iface.launch(share=True) |