import gradio as gr import torch from PIL import Image from transformers import ColPaliForRetrieval, ColPaliProcessor model_name = "vidore/colpali-v1.3-hf" model = ColPaliForRetrieval.from_pretrained(model_name, torch_dtype=torch.float32).eval() processor = ColPaliProcessor.from_pretrained(model_name) def process_image(image): inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) return outputs.embeddings.squeeze().tolist() demo = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs="json", examples=[["example1.jpg"], ["example2.jpg"]] ) demo.launch()