File size: 39,228 Bytes
ee1b999
 
 
 
2972be9
ee1b999
 
 
 
b3aef2c
1971175
 
 
 
 
 
 
 
 
fed35d4
1971175
53e8dbb
 
 
 
 
 
ee1b999
ac15cf4
ee1b999
ac15cf4
ee1b999
 
7b52df4
ee1b999
 
 
 
f48fa14
 
cdccabc
b3aef2c
 
 
f48fa14
cdccabc
b3aef2c
 
 
f48fa14
b3aef2c
 
 
 
f48fa14
b3aef2c
 
 
 
f48fa14
 
b3aef2c
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fa14
17162c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fa14
 
17162c9
 
 
 
 
 
 
 
 
 
 
 
f48fa14
 
 
 
 
 
 
 
 
 
 
ee1b999
f48fa14
 
 
 
 
 
 
 
2972be9
f48fa14
2972be9
f48fa14
 
2972be9
f48fa14
 
 
 
 
2972be9
f48fa14
 
2972be9
 
 
 
 
 
 
 
 
 
17162c9
 
 
 
 
2972be9
17162c9
f48fa14
 
2972be9
 
 
1e64d2b
 
 
 
 
28bc4e5
 
 
 
1e64d2b
 
17162c9
 
1e64d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b52df4
 
1e64d2b
 
 
 
 
 
 
 
7b52df4
 
 
 
1e64d2b
 
 
 
 
 
28bc4e5
 
1e64d2b
 
 
 
 
 
 
 
17162c9
 
1e64d2b
 
 
cdccabc
1e64d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bc4e5
1e64d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2972be9
 
 
28bc4e5
2972be9
17162c9
 
2972be9
 
 
 
 
 
 
 
 
28bc4e5
2972be9
17162c9
 
2972be9
 
f48fa14
 
2972be9
 
 
 
1e64d2b
 
 
2972be9
1e64d2b
 
 
 
 
 
7b52df4
1e64d2b
cdccabc
1e64d2b
 
 
28bc4e5
1e64d2b
 
 
28bc4e5
 
 
 
1e64d2b
 
 
 
 
 
 
 
 
 
 
 
28bc4e5
1e64d2b
 
 
 
 
 
 
 
 
 
 
 
28bc4e5
1e64d2b
ae05bbd
1e64d2b
 
28bc4e5
1e64d2b
 
 
 
 
 
 
2972be9
1e64d2b
 
ee1b999
17162c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1b999
 
 
 
f48fa14
ee1b999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971175
 
7b52df4
 
1971175
 
 
 
 
7b52df4
1971175
 
2972be9
f48fa14
 
 
 
1971175
 
ee1b999
 
 
 
1971175
ee1b999
 
 
 
b48ebfb
 
 
5064c71
 
 
 
 
 
1971175
 
f48fa14
 
1971175
 
 
5064c71
1971175
 
ee1b999
2972be9
 
c22c48e
2972be9
7b52df4
2972be9
 
 
 
 
 
f48fa14
2972be9
 
 
c22c48e
 
 
 
 
 
 
5064c71
941eea2
c22c48e
 
ee1b999
17162c9
 
 
 
8bd1c00
17162c9
 
 
7b52df4
17162c9
1971175
aca1950
1971175
 
 
 
 
 
c22c48e
cbcb51a
 
1971175
1e64d2b
 
1971175
ee1b999
2972be9
ee1b999
b48ebfb
 
 
 
ac15cf4
 
b48ebfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac15cf4
b48ebfb
 
 
ac15cf4
 
 
011f79c
ac15cf4
b48ebfb
 
 
 
 
 
5064c71
b48ebfb
 
 
 
 
 
 
 
 
 
 
 
7b52df4
 
b48ebfb
 
 
 
 
7b52df4
b48ebfb
 
 
f48fa14
 
 
 
b48ebfb
 
 
 
5064c71
 
 
 
 
 
b48ebfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48fa14
b48ebfb
 
 
 
 
 
941eea2
b48ebfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b52df4
b48ebfb
 
 
 
 
 
f48fa14
b48ebfb
 
 
 
 
 
 
aca1950
 
b48ebfb
17162c9
 
 
 
 
7b52df4
17162c9
b48ebfb
aca1950
b48ebfb
 
 
 
 
 
941eea2
 
b48ebfb
 
1e64d2b
 
b48ebfb
ee1b999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5064c71
 
 
 
 
 
 
 
ee1b999
 
 
 
64716c3
1971175
b0bd18e
 
1971175
 
 
b0bd18e
 
1971175
b0bd18e
 
1971175
64716c3
1971175
b0bd18e
 
 
 
 
011f79c
b0bd18e
 
 
 
 
 
 
 
 
 
 
7b52df4
b0bd18e
 
 
ee1b999
b0bd18e
 
1971175
b48ebfb
 
 
 
 
 
 
 
 
 
 
 
 
0d80b6f
b48ebfb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import os
import base64

from agenteval.leaderboard.view import LeaderboardViewer
from huggingface_hub import HfApi

import aliases
from leaderboard_transformer import (
    DataTransformer,
    transform_raw_dataframe,
    create_pretty_tag_map,
    INFORMAL_TO_FORMAL_NAME_MAP,
    _plot_scatter_plotly,
    format_cost_column,
    format_score_column,
    get_pareto_df,
    clean_llm_base_list,
)
from config import (
    CONFIG_NAME,
    EXTRACTED_DATA_DIR,
    IS_INTERNAL,
    RESULTS_DATASET,
)
from content import (
    create_gradio_anchor_id,
    format_error,
    get_benchmark_description,
    hf_uri_to_web_url,
    hyperlink,
    SCATTER_DISCLAIMER,
)

api = HfApi()
os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True)
# Global variables
COMBINED_ICON_MAP = {
    aliases.CANONICAL_OPENNESS_OPEN_SOURCE_OPEN_WEIGHTS: {
        aliases.CANONICAL_TOOL_USAGE_STANDARD: "assets/os-ow-standard.svg",
        aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "assets/os-ow-equivalent.svg",
        aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "assets/os-ow-custom.svg",
    },
    aliases.CANONICAL_OPENNESS_OPEN_SOURCE_CLOSED_WEIGHTS: {
        aliases.CANONICAL_TOOL_USAGE_STANDARD: "assets/os-standard.svg",
        aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "assets/os-equivalent.svg",
        aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "assets/os-custom.svg",
    },
    aliases.CANONICAL_OPENNESS_CLOSED_API_AVAILABLE: {
        aliases.CANONICAL_TOOL_USAGE_STANDARD: "assets/api-standard.svg",
        aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "assets/api-equivalent.svg",
        aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "assets/api-custom.svg",
    },
    aliases.CANONICAL_OPENNESS_CLOSED_UI_ONLY: {
        aliases.CANONICAL_TOOL_USAGE_STANDARD: "assets/c-standard.svg",
        aliases.CANONICAL_TOOL_USAGE_CUSTOM_INTERFACE: "assets/c-equivalent.svg",
        aliases.CANONICAL_TOOL_USAGE_FULLY_CUSTOM: "assets/c-custom.svg",
    }
}


# it's important to do the tool usage first here, so that when
# we do openness, the tool usage changes get picked up
for openness in COMBINED_ICON_MAP:
    for canonical_tool_usage, tool_usage_aliases in aliases.TOOL_USAGE_ALIASES.items():
        for tool_usage_alias in tool_usage_aliases:
            COMBINED_ICON_MAP[openness][tool_usage_alias] = COMBINED_ICON_MAP[openness][canonical_tool_usage]

for canonical_openness, openness_aliases in aliases.OPENNESS_ALIASES.items():
    for openness_alias in openness_aliases:
        COMBINED_ICON_MAP[openness_alias] = COMBINED_ICON_MAP[canonical_openness]


OPENNESS_SVG_MAP = {
    "Open source & open weights": {
        "path": "assets/ellipse-pink.svg",
        "description": "Code and models are open"
    },
    "Open source & closed weights": {
        "path": "assets/ellipse-coral.svg", 
        "description": "Code is open but uses closed-weight models"
    },
    "Closed source & API available": {
        "path": "assets/ellipse-yellow.svg",
        "description": "No access to code; API access only"
    },
    "Closed source & UI only": {
        "path": "assets/ellipse-white.svg",
        "description": "No access to code or API; UI access only"
    },
}
TOOLING_SVG_MAP = {
    "Standard": {
        "path": "assets/five-point-star.svg",
        "description": "Uses only tools explicitly provided in state.tools"
    },
    "Custom interface": {
        "path": "assets/four-point-star.svg",
        "description": "Custom tools for accessing an equivalent underlying environment"
    },
    "Fully custom": {
        "path": "assets/three-point-star.svg",
        "description": "Uses tools beyond constraints of Standard or Custom interface"
    },
}

def get_svg_as_data_uri(path: str) -> str:
    """Reads an SVG file and returns it as a base64-encoded data URI."""
    try:
        with open(path, "rb") as svg_file:
            encoded_svg = base64.b64encode(svg_file.read()).decode("utf-8")
            return f"data:image/svg+xml;base64,{encoded_svg}"
    except FileNotFoundError:
        print(f"Warning: SVG file not found at {path}")
        return ""

# Create a pre-loaded version of our map. This should be run ONCE when the app starts.
PRELOADED_URI_MAP = {
    openness: {
        tooling: get_svg_as_data_uri(path)
        for tooling, path in tooling_map.items()
    }
    for openness, tooling_map in COMBINED_ICON_MAP.items()
}

def get_combined_icon_html(row, uri_map):
    """
    Looks up the correct icon URI from the pre-loaded map based on the row's
    'Openness' and 'Agent Tooling' values and returns an HTML <img> tag.
    """
    openness_val = row['Openness']
    tooling_val = row['Agent Tooling']
    uri = uri_map.get(openness_val, {}).get(tooling_val, "")
    # The tooltip will show the exact combination for clarity.
    tooltip = f"Openness: {openness_val}, Tooling: {tooling_val}"

    # Return the HTML string that Gradio will render in the DataFrame.
    return f'<img src="{uri}" alt="{tooltip}" title="{tooltip}" style="width:24px; height:24px;">'

def create_svg_html(value, svg_map):
    """
    Generates the absolute simplest HTML for an icon, without any extra text.
    This version is compatible with gr.DataFrame.
    """
    if pd.isna(value) or value not in svg_map:
        return ""

    path_info = svg_map[value]
    # Handle both old string format and new object format
    if isinstance(path_info, dict):
        path = path_info["path"]
    else:
        path = path_info

    src = get_svg_as_data_uri(path)
    # Generate the HTML for the single icon, with NO text.
    if src:
        return f'<img src="{src}" style="width: 16px; height: 16px; vertical-align: middle;" alt="{value}" title="{value}">'
    return ""

def build_openness_tooltip_content() -> str:
    """
    Generates the inner HTML for the Agent Openness tooltip card,
    """
    descriptions = {
        "Open source & open weights": "Both code and ML models are open",
        "Open source & closed weights": "Code is open but uses an ML model with closed-weights",
        "Closed source & API available": "No access to code; API access only",
        "Closed source & UI only": "No access to code or API; UI  access only",
    }
    html_items = []
    for name, info in OPENNESS_SVG_MAP.items():
        uri = get_svg_as_data_uri(info["path"])
        desc = descriptions.get(name, "")

        html_items.append(f"""
            <div class="tooltip-legend-item">
                <img src="{uri}" alt="{name}">
                <div>
                    <strong>{name}</strong>
                    <span>{desc}</span>
                </div>
            </div>
        """)

    return "".join(html_items)

def build_pareto_tooltip_content() -> str:
    """Generates the inner HTML for the Pareto tooltip card with final copy."""
    trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
    trophy_icon_html = f'<img src="{trophy_uri}" style="width: 25px; height: 25px; vertical-align: middle;">'
    return f"""
        <h3>On Pareto Frontier</h3>
        <p class="tooltip-description">The Pareto frontier represents the best balance between score and cost.</p>
        <p class="tooltip-description">Agents on the frontier either:</p>
        <ul class="tooltip-sub-list">
            <li>Offer the lowest cost for a given performance, or</li>
            <li>Deliver the best performance at a given cost.</li>
        </ul>
        <div class="tooltip-description" style="margin-top: 12px; display: flex; align-items: center;">
            <span>These agents are marked with this icon:</span>
            <span>{trophy_icon_html}</span>
        </div>
    """

def build_tooling_tooltip_content() -> str:
    """Generates the inner HTML for the Agent Tooling tooltip card."""
    descriptions = {
        "Standard": "Uses only predefined tools from the evaluation environment (as defined in Inspect's state.tools).",
        "Custom interface": "Custom tools for accessing an equivalent underlying environment:",
        "Fully custom": "Uses tools beyond constraints of Standard or Custom interface",
    }
    custom_interface_sub_list = """
        <ul class="tooltip-sub-list">
            <li>Literature tasks: Information access is limited to date-restricted usage of the Asta MCP tools.</li>
            <li>Code tasks: Code execution is limited to an iPython shell in a machine environment initialized with the standard Asta sandbox Dockerfile (or equivalent).</li>
        </ul>
    """
    html_items = []
    for name, info in TOOLING_SVG_MAP.items():
        uri = get_svg_as_data_uri(info["path"])
        desc = descriptions.get(name, "")

        # Check if this is the special case that needs a sub-list
        sub_list_html = custom_interface_sub_list if name == "Custom Interface" else ""

        html_items.append(f"""
            <div class="tooltip-legend-item">
                <img src="{uri}" alt="{name}">
                <div>
                    <strong>{name}</strong>
                    <span>{desc}</span>
                    {sub_list_html}
                </div>
            </div>
        """)

    return "".join(html_items)


def build_descriptions_tooltip_content(table) -> str:
    """Generates the inner HTML for the Column Descriptions tooltip card depending on which kind of table."""
    if table == "Overall":
        return """
            <div class="tooltip-description-item"><b>Agent:</b> Name of the evaluated agent.</div>
            <div class="tooltip-description-item"><b>Submitter:</b> Organization or individual who submitted the agent for evaluation.</div>
            <div class="tooltip-description-item"><b>LLM Base:</b> Model(s) used by the agent. Hover over β“˜ to view all.</div>
            <div class="tooltip-description-item"><b>Overall Score:</b> Macro-average of the four category-level average scores. Each category contributes equally.</div>
            <div class="tooltip-description-item"><b>Overall Cost:</b> Macro-average cost per problem across all categories, in USD. Each category contributes equally.</div>
            <div class="tooltip-description-item"><b>Literature Understanding Score:</b> Macro-average score across Literature Understanding benchmarks.</div>
            <div class="tooltip-description-item"><b>Literature Understanding Cost:</b> Macro-average cost per problem (USD) across Literature Understanding benchmarks.</div>
            <div class="tooltip-description-item"><b>Code Execution Score:</b> Macro-average score across Code & Execution benchmarks.</div>
            <div class="tooltip-description-item"><b>Code Execution Cost:</b> Macro-average cost per problem (USD) across Code & Execution benchmarks.</div>
            <div class="tooltip-description-item"><b>Data Analysis Score:</b> Macro-average score across Data Analysis benchmarks.</div>
            <div class="tooltip-description-item"><b>Data Analysis Cost:</b> Macro-average cost per problem (USD) across Data Analysis benchmarks.</div>
            <div class="tooltip-description-item"><b>End-to-End Discovery Score:</b> Macro-average score across End-to-End Discovery benchmarks.</div>
            <div class="tooltip-description-item"><b>End-to-End Discovery Cost:</b> Macro-average cost per problem (USD)across End-to-End Discovery benchmarks.</div>
            <div class="tooltip-description-item"><b>Categories Attempted:</b> Number of core categories with at least one benchmark attempted (out of 4).</div>
            <div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
        """
    elif table in ["Literature Understanding", "Code & Execution", "Data Analysis", "End-to-End Discovery"]:
        return f"""
            <div class="tooltip-description-item"><b>Agent:</b> Name of the evaluated agent.</div>
            <div class="tooltip-description-item"><b>Submitter:</b> Organization or individual who submitted the agent for evaluation.</div>
            <div class="tooltip-description-item"><b>LLM Base:</b> Model(s) used by the agent. Hover over β“˜ to view all.</div>
            <div class="tooltip-description-item"><b>{table} Score:</b> Macro-average score across {table} benchmarks.</div>
            <div class="tooltip-description-item"><b>{table} Cost:</b> Macro-average cost per problem (USD) across {table} benchmarks.</div>
            <div class="tooltip-description-item"><b>Benchmark Score:</b> Average (mean) score on the benchmark.</div>
            <div class="tooltip-description-item"><b>Benchmark Cost:</b> Average (mean) cost per problem (USD) on the benchmark.</div>
            <div class="tooltip-description-item"><b>Benchmarks Attempted:</b> Number of benchmarks attempted in this category (e.g., 3/5).</div>
            <div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
        """
    else:
        # Fallback for any other table type, e.g., individual benchmarks
        return f"""
            <div class="tooltip-description-item"><b>Agent:</b> Name of the evaluated agent.</div>
            <div class="tooltip-description-item"><b>Submitter:</b> Organization or individual who submitted the agent for evaluation.</div>
            <div class="tooltip-description-item"><b>LLM Base:</b> Model(s) used by the agent. Hover over β“˜ to view all.</div>
            <div class="tooltip-description-item"><b>Benchmark Attempted:</b> Indicates whether the agent attempted this benchmark.</div>
            <div class="tooltip-description-item"><b>{table} Score:</b> Score achieved by the agent on this benchmark.</div>
            <div class="tooltip-description-item"><b>{table} Cost:</b> Cost incurred by the agent to solve this benchmark (in USD).</div>
            <div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
        """

# Dynamically generate the correct HTML for the legend parts
openness_html = " ".join([create_svg_html(name, OPENNESS_SVG_MAP) for name in OPENNESS_SVG_MAP])
tooling_html = " ".join([create_svg_html(name, TOOLING_SVG_MAP) for name in TOOLING_SVG_MAP])
# Create HTML for the "Openness" legend items for table
openness_html_items = []
for name, info in OPENNESS_SVG_MAP.items():
    uri = get_svg_as_data_uri(info["path"])
    # Each item is now its own flexbox container to guarantee alignment
    openness_html_items.append(
        f'<div style="display: flex; align-items: center; white-space: nowrap;">'
        f'<img src="{uri}" alt="{name}" title="{name}" style="width:16px; height:16px; margin-right: 4px; flex-shrink: 0;">'
        f'<span>{name}</span>'
        f'</div>'
    )
openness_html = " ".join(openness_html_items)

# Create HTML for the "Tooling" legend items for table
tooling_html_items = []
for name, info in TOOLING_SVG_MAP.items():
    uri = get_svg_as_data_uri(info["path"])
    tooling_html_items.append(
        f'<div style="display: flex; align-items: center; white-space: nowrap;">'
        f'<img src="{uri}" alt="{name}" title="{name}" style="width:16px; height:16px; margin-right: 4px; flex-shrink: 0;">'
        f'<span>{name}</span>'
        f'</div>'
    )
tooling_html = " ".join(tooling_html_items)

pareto_tooltip_content = build_pareto_tooltip_content()
openness_tooltip_content = build_openness_tooltip_content()
tooling_tooltip_content = build_tooling_tooltip_content()

def create_legend_markdown(which_table: str) -> str:
    """
    Generates the complete HTML for the legend section, including tooltips.
    This is used in the main leaderboard display.
    """
    descriptions_tooltip_content = build_descriptions_tooltip_content(which_table)
    trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
    legend_markdown = f"""
    <div style="display: flex; flex-wrap: wrap; align-items: flex-start; gap: 0px; font-size: 13px; padding-bottom: 8px;">
            
        <div> <!-- Container for the Pareto section -->
            <b>Pareto</b>
            <span class="tooltip-icon-legend tooltip-pin-left">
                β“˜
                <span class="tooltip-card">{pareto_tooltip_content}</span>
            </span>
            <div class="table-legend-item">
                <img src="{trophy_uri}" alt="On Frontier" style="width:20px; height:20px; margin-right: 4px; flex-shrink: 0;">
                <span>On frontier</span>
            </div>
        </div>
    
        <div> <!-- Container for the Openness section -->
            <b>Agent Openness</b>
            <span class="tooltip-icon-legend">
                β“˜
                <span class="tooltip-card">
                    <h3>Agent Openness</h3>
                    <p class="tooltip-description">Indicates how transparent and reproducible an agent is.</p>
                    <div class="tooltip-items-container">{openness_tooltip_content}</div>
                </span>
            </span>
            <div class="table-legend-item">{openness_html}</div>
        </div>
    
        <div> <!-- Container for the Tooling section -->
            <b>Agent Tooling</b>
            <span class="tooltip-icon-legend">
                β“˜
                <span class="tooltip-card">
                    <h3>Agent Tooling</h3>
                    <p class="tooltip-description">Describes the tool usage and execution environment of the agent during evaluation.</p>
                    <div class="tooltip-items-container">{tooling_tooltip_content}</div>
                </span>
            </span>
            <div class="table-legend-item">{tooling_html}</div>
        </div>
        
        <div><!-- Container for the Column Descriptions section -->
            <b>Column Descriptions</b>
            <span class="tooltip-icon-legend tooltip-pin-right">
                β“˜
                <span class="tooltip-card">
                    <h3>Column Descriptions</h3>
                    <div class="tooltip-items-container">{descriptions_tooltip_content}</div>
                </span>
            </span>
        </div>
    </div>
    """
    return legend_markdown

# Create HTML for plot legend with SVG icons and keys
openness_legend_items = []
for name, info in OPENNESS_SVG_MAP.items():
    uri = get_svg_as_data_uri(info["path"])
    if uri:
        openness_legend_items.append(
            f'<div class="plot-legend-item">'
                f'<img class="plot-legend-item-svg" src="{uri}" alt="{name}" title="{name}">'
                f'<div class="plot-legend-item-text">'
                    f'<div>'
                        f'<span>{name}</span>'
                    f'</div>'
                    f'<span class="description">{info["description"]}</span>'
                f'</div>'
            f'</div>'
        )

tooling_legend_items = []
for name, info in TOOLING_SVG_MAP.items():
    uri = get_svg_as_data_uri(info["path"])
    if uri:
        tooling_legend_items.append(
            f'<div class="plot-legend-item">'
                f'<img class="plot-legend-item-svg plot-legend-tooling-svg" src="{uri}" alt="{name}" title="{name}">'
                f'<div class="plot-legend-item-text">'
                    f'<div>'
                        f'<span>{name}</span>'
                    f'</div>'
                    f'<span class="description">{info["description"]}</span>'
                f'</div>'
            f'</div>'
        )

plot_legend_html = f"""
    <div class="plot-legend-container">
        <div id="plot-legend-logo">
            <img src="{get_svg_as_data_uri("assets/logo.svg")}">
        </div>
        <div style="margin-bottom: 16px;">
            <span class="plot-legend-category-heading">Pareto</span>
            <div style="margin-top: 8px;">
                <div class="plot-legend-item">
                    <img id="plot-legend-item-pareto-svg" class="plot-legend-item-svg" src="{get_svg_as_data_uri("assets/pareto.svg")}">
                    <span>On frontier</span>
                </div>
            </div>
        </div>
        <div style="margin-bottom: 16px;">
            <span class="plot-legend-category-heading">Agent Openness</span>
            <div style="margin-top: 8px;">
                {''.join(openness_legend_items)}
            </div>
        </div>
        <div>
            <span class="plot-legend-category-heading">Agent Tooling</span>
            <div style="margin-top: 8px;">
                {''.join(tooling_legend_items)}
            </div>
        </div>
    </div>
""";

# --- Global State for Viewers (simple caching) ---
CACHED_VIEWERS = {}
CACHED_TAG_MAPS = {}


class DummyViewer:
    """A mock viewer to be cached on error. It has a ._load() method
       to ensure it behaves like the real LeaderboardViewer."""
    def __init__(self, error_df):
        self._error_df = error_df

    def _load(self):
        # The _load method returns the error DataFrame and an empty tag map
        return self._error_df, {}

def get_leaderboard_viewer_instance(split: str):
    """
    Fetches the LeaderboardViewer for a split, using a cache to avoid
    re-downloading data. On error, returns a stable DummyViewer object.
    """
    global CACHED_VIEWERS, CACHED_TAG_MAPS

    if split in CACHED_VIEWERS:
        # Cache hit: return the cached viewer and tag map
        return CACHED_VIEWERS[split], CACHED_TAG_MAPS.get(split, {"Overall": []})

    # --- Cache miss: try to load data from the source ---
    try:
        print(f"Using Hugging Face dataset for split '{split}': {RESULTS_DATASET}/{CONFIG_NAME}")
        viewer = LeaderboardViewer(
            repo_id=RESULTS_DATASET,
            config=CONFIG_NAME,
            split=split,
            is_internal=IS_INTERNAL
        )

        # Simplify tag map creation
        pretty_tag_map = create_pretty_tag_map(viewer.tag_map, INFORMAL_TO_FORMAL_NAME_MAP)

        # Cache the results for next time
        CACHED_VIEWERS[split] = viewer
        CACHED_TAG_MAPS[split] = pretty_tag_map # Cache the pretty map directly

        return viewer, pretty_tag_map

    except Exception as e:
        # On ANY error, create a consistent error message and cache a DummyViewer
        error_message = f"Error loading data for split '{split}': {e}"
        print(format_error(error_message))

        dummy_df = pd.DataFrame({"Message": [error_message]})
        dummy_viewer = DummyViewer(dummy_df)
        dummy_tag_map = {"Overall": []}

        # Cache the dummy objects so we don't try to fetch again on this run
        CACHED_VIEWERS[split] = dummy_viewer
        CACHED_TAG_MAPS[split] = dummy_tag_map

        return dummy_viewer, dummy_tag_map


def create_leaderboard_display(
        full_df: pd.DataFrame,
        tag_map: dict,
        category_name: str,
        split_name: str
):
    """
    This UI factory takes pre-loaded data and renders the main DataFrame and Plot
    for a given category (e.g., "Overall" or "Literature Understanding").
    """
    # 1. Instantiate the transformer and get the specific view for this category.
    # The function no longer loads data itself; it filters the data it receives.
    transformer = DataTransformer(full_df, tag_map)
    df_view, plots_dict = transformer.view(tag=category_name, use_plotly=True)
    pareto_df = get_pareto_df(df_view)
    # Get the list of agents on the frontier. We'll use this list later.
    trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
    trophy_icon_html = f'<img src="{trophy_uri}" alt="On Pareto Frontier" title="On Pareto Frontier" style="width:25px; height:25px;">'
    if not pareto_df.empty and 'id' in pareto_df.columns:
        pareto_agent_names = pareto_df['id'].tolist()
    else:
        pareto_agent_names = []
    df_view['Pareto'] = df_view.apply(
        lambda row: trophy_icon_html if row['id'] in pareto_agent_names else '',
        axis=1
    )
    # Create mapping for Openness / tooling
    df_view['Icon'] = df_view.apply(
        lambda row: get_combined_icon_html(row, PRELOADED_URI_MAP),
        axis=1  # IMPORTANT: axis=1 tells pandas to process row-by-row
    )

    # Format cost columns
    for col in df_view.columns:
        if "Cost" in col:
            df_view = format_cost_column(df_view, col)

    # Fill NaN scores with 0
    for col in df_view.columns:
        if "Score" in col:
            df_view = format_score_column(df_view, col)
    scatter_plot = plots_dict.get('scatter_plot', go.Figure())
    #Make pretty and format the LLM Base column
    df_view['LLM Base'] = df_view['LLM Base'].apply(clean_llm_base_list)
    df_view['LLM Base'] = df_view['LLM Base'].apply(format_llm_base_with_html)
    # append the repro url to the end of the agent name
    if 'Source' in df_view.columns:
        df_view['Agent'] = df_view.apply(
            lambda row: f"{row['Agent']} {row['Source']}" if row['Source'] else row['Agent'],
            axis=1
        )

    all_cols = df_view.columns.tolist()
    # Remove pareto and Icon columns and insert it at the beginning
    all_cols.insert(0, all_cols.pop(all_cols.index('Icon')))
    all_cols.insert(0, all_cols.pop(all_cols.index('Pareto')))
    df_view = df_view[all_cols]
    # Drop internally used columns that are not needed in the display
    columns_to_drop = ['id', 'Openness', 'Agent Tooling', 'Source']
    df_view = df_view.drop(columns=columns_to_drop, errors='ignore')

    df_headers = df_view.columns.tolist()
    df_datatypes = []
    for col in df_headers:
        if col == "Logs" or "Cost" in col or "Score" in col:
            df_datatypes.append("markdown")
        elif col in ["Agent","Icon","LLM Base", "Pareto"]:
            df_datatypes.append("html")
        else:
            df_datatypes.append("str")

    header_rename_map = {
        "Pareto": "",
        "Icon": "",
    }
    # 2. Create the final list of headers for display.
    df_view = df_view.rename(columns=header_rename_map)
    # Dynamically set widths for the DataFrame columns
    fixed_start_widths = [40, 40, 200, 100, 200]
    num_score_cost_cols = 0
    remaining_headers = df_headers[len(fixed_start_widths):]
    for col in remaining_headers:
        if "Score" in col or "Cost" in col:
            num_score_cost_cols += 1
    dynamic_widths = [90] * num_score_cost_cols
    fixed_end_widths = [90, 100, 50]
    # 5. Combine all the lists to create the final, fully dynamic list.
    final_column_widths = fixed_start_widths + dynamic_widths + fixed_end_widths

    with gr.Row():
        with gr.Column(scale=3):
            plot_component = gr.Plot(
                value=scatter_plot,
                show_label=False,
            )
        with gr.Column(scale=1):
            gr.HTML(value=plot_legend_html)
    gr.Markdown(value=SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")

    # Put table and key into an accordion
    with gr.Accordion("Show / Hide Table View", open=True, elem_id="leaderboard-accordion"):
        dataframe_component = gr.DataFrame(
            headers=df_headers,
            value=df_view,
            datatype=df_datatypes,
            interactive=False,
            wrap=True,
            column_widths=final_column_widths,
            elem_classes=["wrap-header-df"],
            show_search="search",
        )
        legend_markdown = create_legend_markdown(category_name)
        gr.HTML(value=legend_markdown, elem_id="legend-markdown")

    # Return the components so they can be referenced elsewhere.
    return plot_component, dataframe_component

# # --- Detailed Benchmark Display ---
def create_benchmark_details_display(
        full_df: pd.DataFrame,
        tag_map: dict,
        category_name: str,
        validation: bool = False,
):
    """
    Generates a detailed breakdown for each benchmark within a given category.
    For each benchmark, it creates a title, a filtered table, and a scatter plot.
    Args:
        full_df (pd.DataFrame): The complete, "pretty" dataframe for the entire split.
        tag_map (dict): The "pretty" tag map to find the list of benchmarks.
        category_name (str): The main category to display details for (e.g., "Literature Understanding").
    """
    # 1. Get the list of benchmarks for the selected category
    benchmark_names = tag_map.get(category_name, [])

    if not benchmark_names:
        gr.Markdown(f"No detailed benchmarks found for the category: {category_name}")
        return

    gr.HTML(f'<h2 class="benchmark-main-subtitle">{category_name} Detailed Benchmark Results</h2>')
    gr.Markdown("---")
    # 2. Loop through each benchmark and create its UI components
    for benchmark_name in benchmark_names:
        gr.HTML(f'''
            <h3 class="benchmark-title" id="{create_gradio_anchor_id(benchmark_name, validation)}">{benchmark_name} Leaderboard</h3>
            <div class="benchmark-description">{get_benchmark_description(benchmark_name, validation)}</div>
            <button onclick="scroll_to_element('page-content-wrapper')" class="primary-link-button">Return to the aggregate {category_name} leaderboard</button>
        ''')

        # 3. Prepare the data for this specific benchmark's table and plot
        benchmark_score_col = f"{benchmark_name} Score"
        benchmark_cost_col = f"{benchmark_name} Cost"

        # Define the columns needed for the detailed table
        table_cols = ['Agent','Source','Openness','Agent Tooling', 'Submitter', 'Date', benchmark_score_col, benchmark_cost_col,'Logs','id', 'LLM Base']

        # Filter to only columns that actually exist in the full dataframe
        existing_table_cols = [col for col in table_cols if col in full_df.columns]

        if benchmark_score_col not in existing_table_cols:
            gr.Markdown(f"Score data for {benchmark_name} not available.")
            continue # Skip to the next benchmark if score is missing

        # Create a specific DataFrame for the table view
        benchmark_table_df = full_df[existing_table_cols].copy()
        pareto_df = get_pareto_df(benchmark_table_df)
        # Get the list of agents on the frontier. We'll use this list later.
        trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
        trophy_icon_html = f'<img src="{trophy_uri}" alt="On Pareto Frontier" title="On Pareto Frontier" style="width:25px; height:25px;">'
        if not pareto_df.empty and 'id' in pareto_df.columns:
            pareto_agent_names = pareto_df['id'].tolist()
        else:
            pareto_agent_names = []
        benchmark_table_df['Pareto'] = benchmark_table_df.apply(
            lambda row: trophy_icon_html if row['id'] in pareto_agent_names else '',
            axis=1
        )

        benchmark_table_df['Icon'] = benchmark_table_df.apply(
            lambda row: get_combined_icon_html(row, PRELOADED_URI_MAP),
            axis=1  # IMPORTANT: axis=1 tells pandas to process row-by-row
        )

        #Make pretty and format the LLM Base column
        benchmark_table_df['LLM Base'] = benchmark_table_df['LLM Base'].apply(clean_llm_base_list)
        benchmark_table_df['LLM Base'] = benchmark_table_df['LLM Base'].apply(format_llm_base_with_html)
        # append the repro url to the end of the agent name
        if 'Source' in benchmark_table_df.columns:
            benchmark_table_df['Agent'] = benchmark_table_df.apply(
                lambda row: f"{row['Agent']} {row['Source']}" if row['Source'] else row['Agent'],
                axis=1
            )

        # Calculated and add "Benchmark Attempted" column
        def check_benchmark_status(row):
            has_score = pd.notna(row.get(benchmark_score_col))
            has_cost = pd.notna(row.get(benchmark_cost_col))
            if has_score and has_cost:
                return "βœ…"
            if has_score or has_cost:
                return "⚠️"
            return "🚫 "

        # Apply the function to create the new column
        benchmark_table_df['Attempted Benchmark'] = benchmark_table_df.apply(check_benchmark_status, axis=1)
        # Sort the DataFrame
        if benchmark_score_col in benchmark_table_df.columns:
            benchmark_table_df = benchmark_table_df.sort_values(
                by=benchmark_score_col, ascending=False, na_position='last'
            )
        # 1. Format the cost and score columns
        benchmark_table_df = format_cost_column(benchmark_table_df, benchmark_cost_col)
        benchmark_table_df = format_score_column(benchmark_table_df, benchmark_score_col)
        desired_cols_in_order = [
            'Pareto',
            'Icon',
            'Agent',
            'Submitter',
            'LLM Base',
            'Attempted Benchmark',
            benchmark_score_col,
            benchmark_cost_col,
            'Date',
            'Logs'
        ]
        for col in desired_cols_in_order:
            if col not in benchmark_table_df.columns:
                benchmark_table_df[col] = pd.NA # Add as an empty column
        benchmark_table_df = benchmark_table_df[desired_cols_in_order]
        # Rename columns for a cleaner table display, as requested
        benchmark_table_df.rename({
            benchmark_score_col: 'Score',
            benchmark_cost_col: 'Cost',
        }, inplace=True)
        # Ensure the 'Logs' column is formatted correctly
        df_headers = benchmark_table_df.columns.tolist()
        df_datatypes = []
        for col in df_headers:
            if "Logs" in col or "Cost" in col or "Score" in col:
                df_datatypes.append("markdown")
            elif col in ["Agent", "Icon", "LLM Base", "Pareto"]:
                df_datatypes.append("html")
            else:
                df_datatypes.append("str")
        # Remove Pareto, Openness, and Agent Tooling from the headers
        header_rename_map = {
            "Pareto": "",
            "Icon": "",
        }
        # 2. Create the final list of headers for display.
        benchmark_table_df = benchmark_table_df.rename(columns=header_rename_map)
        benchmark_plot = _plot_scatter_plotly(
            data=full_df,
            x=benchmark_cost_col,
            y=benchmark_score_col,
            agent_col="Agent",
            name=benchmark_name
        )
        with gr.Row():
            with gr.Column(scale=3):
                gr.Plot(value=benchmark_plot, show_label=False) 
            with gr.Column(scale=1):
                gr.HTML(value=plot_legend_html)
        gr.Markdown(value=SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")

        # Put table and key into an accordion
        with gr.Accordion("Show / Hide Table View", open=True, elem_id="leaderboard-accordion"):
            gr.DataFrame(
                headers=df_headers,
                value=benchmark_table_df,
                datatype=df_datatypes,
                interactive=False,
                wrap=True,
                column_widths=[40, 40, 200, 150, 175, 85, 100, 100, 80, 40],
                show_search="search",
                elem_classes=["wrap-header-df"]
            )
            legend_markdown = create_legend_markdown(benchmark_name)
            gr.HTML(value=legend_markdown, elem_id="legend-markdown")

def get_full_leaderboard_data(split: str) -> tuple[pd.DataFrame, dict]:
    """
    Loads and transforms the complete dataset for a given split.
    This function handles caching and returns the final "pretty" DataFrame and tag map.
    """
    viewer_or_data, raw_tag_map = get_leaderboard_viewer_instance(split)

    if isinstance(viewer_or_data, (LeaderboardViewer, DummyViewer)):
        raw_df, _ = viewer_or_data._load()
        if raw_df.empty:
            return pd.DataFrame(), {}

        pretty_df = transform_raw_dataframe(raw_df)
        pretty_tag_map = create_pretty_tag_map(raw_tag_map, INFORMAL_TO_FORMAL_NAME_MAP)
        if "Logs" in pretty_df.columns:
            def format_log_entry_to_html(raw_uri):
                if pd.isna(raw_uri) or raw_uri == "": return ""
                web_url = hf_uri_to_web_url(str(raw_uri))
                return hyperlink(web_url, "πŸ”—") if web_url else ""
            # Apply the function to the "Logs" column
            pretty_df["Logs"] = pretty_df["Logs"].apply(format_log_entry_to_html)

        if "Source" in pretty_df.columns:
            def format_source_url_to_html(raw_url):
                # Handle empty or NaN values, returning a blank string.
                if pd.isna(raw_url) or raw_url == "": return ""
                # Assume 'source_url' is already a valid web URL and doesn't need conversion.
                return hyperlink(str(raw_url), "πŸ”—")
            # Apply the function to the "source_url" column.
            pretty_df["Source"] = pretty_df["Source"].apply(format_source_url_to_html)
        return pretty_df, pretty_tag_map

    # Fallback for unexpected types
    return pd.DataFrame(), {}
def create_sub_navigation_bar(tag_map: dict, category_name: str, validation: bool = False) -> gr.HTML:
    """
    Builds the entire sub-navigation bar as a single, self-contained HTML component.
    This bypasses Gradio's layout components, giving us full control.
    """
    benchmark_names = tag_map.get(category_name, [])
    if not benchmark_names:
        # Return an empty HTML component to prevent errors
        return gr.HTML()

    # Start building the list of HTML button elements as strings
    html_buttons = []
    for name in benchmark_names:
        target_id = create_gradio_anchor_id(name, validation)

        # Create a standard HTML button.
        # The onclick attribute calls our global JS function directly.
        # Note the mix of double and single quotes.
        button_str = f"""
            <button
                class="primary-link-button"
                onclick="scroll_to_element('{target_id}')"
            >
                {name}
            </button>
        """
        html_buttons.append(button_str)

    # Join the button strings and wrap them in a single div container
    # This container will be our flexbox row.
    full_html = f"""
        <div class="sub-nav-bar-container">
            <span class="sub-nav-label">Benchmarks in this category:</span>
            {''.join(html_buttons)}
        </div>
    """

    # Return the entire navigation bar as one single Gradio HTML component
    return gr.HTML(full_html)

def format_llm_base_with_html(value):
    """
    Formats the 'LLM Base' cell value.
    If the value is a list with more than 1 element, it returns an
      HTML <span> with the full list in a hover-over tooltip.
    If it's a single-element list, it returns just that element.
    Otherwise, it returns the original value.
    """
    if isinstance(value, list):
        if len(value) > 1:
            # Join the list items with a newline character for a clean tooltip
            tooltip_text = "\n".join(map(str, value))
            # Return an HTML span with the title attribute for the tooltip
            return f'<span class="tooltip-icon cell-tooltip-icon" style="cursor: help;" data-tooltip="{tooltip_text}">{value[0]} (+ {len(value) - 1}) β“˜</span>'
        if len(value) == 1:
            # If only one item, just return that item
            return value[0]
    # Return the value as-is if it's not a list or is an empty list
    return value