Spaces:
Runtime error
Runtime error
File size: 14,119 Bytes
0e96306 0d07918 0e96306 0d07918 0e96306 b141ec0 5cee749 0e96306 bf89939 0e96306 bf89939 5d8545a 0e96306 31eb75d 0e96306 31eb75d 0e96306 5d8545a 5cee749 0e96306 5cee749 daf8b2f 5cee749 0e96306 5cee749 0e96306 31eb75d 0e96306 5cee749 0e96306 5cee749 0e96306 5cee749 31eb75d 0e96306 31eb75d 0e96306 5cee749 0e96306 5cee749 0e96306 1fcad2d 0e96306 fdb52c6 0e96306 15bb841 0e96306 5cee749 0e96306 15bb841 0e96306 0d82915 2a95f27 5cee749 0e96306 5cee749 0e96306 5cee749 0e96306 9718f50 89ccc6f 0e96306 9718f50 054cc66 0e96306 9718f50 054cc66 0e96306 bd2cd64 06b2811 3e4d080 06b2811 bd2cd64 06b2811 bd2cd64 9718f50 06b2811 9718f50 bd2cd64 9718f50 0e96306 bd2cd64 06b2811 2a79bab bd2cd64 06b2811 bd2cd64 06b2811 bd2cd64 9718f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# import streamlit as st
# from function import GetLLMResponse
# from langchain_community.llms import OpenAI
# from langchain_google_genai import ChatGoogleGenerativeAI
# # Page configuration
# st.set_page_config(page_title="Interview Practice Bot",
# page_icon="π",
# layout="wide",
# initial_sidebar_state="collapsed")
# def main():
# roles_and_topics = {
# "Front-End Developer": ["HTML/CSS", "JavaScript and Frameworks (React, Angular, Vue.js)", "Responsive Design", "Browser Compatibility"],
# "Back-End Developer": ["Server-Side Languages (Node.js, Python, Ruby, PHP)", "Database Management (SQL, NoSQL)", "API Development", "Server and Hosting Management"],
# "Full-Stack Developer": ["Combination of Front-End and Back-End Topics", "Integration of Systems", "DevOps Basics"],
# "Mobile Developer": ["Android Development (Java, Kotlin)", "iOS Development (Swift, Objective-C)", "Cross-Platform Development (Flutter, React Native)"],
# "Data Scientist": ["Statistical Analysis", "Machine Learning Algorithms", "Data Wrangling and Cleaning", "Data Visualization"],
# "Data Analyst": ["Data Collection and Processing", "SQL and Database Querying", "Data Visualization Tools (Tableau, Power BI)", "Basic Statistics"],
# "Machine Learning Engineer": ["Supervised and Unsupervised Learning", "Model Deployment", "Deep Learning", "Natural Language Processing"],
# "DevOps Engineer": ["Continuous Integration/Continuous Deployment (CI/CD)", "Containerization (Docker, Kubernetes)", "Infrastructure as Code (Terraform, Ansible)", "Cloud Platforms (AWS, Azure, Google Cloud)"],
# "Cloud Engineer": ["Cloud Architecture", "Cloud Services (Compute, Storage, Networking)", "Security in the Cloud", "Cost Management"],
# "Cybersecurity Analyst": ["Threat Detection and Mitigation", "Security Protocols and Encryption", "Network Security", "Incident Response"],
# "Penetration Tester": ["Vulnerability Assessment", "Ethical Hacking Techniques", "Security Tools (Metasploit, Burp Suite)", "Report Writing and Documentation"],
# "Project Manager": ["Project Planning and Scheduling", "Risk Management", "Agile and Scrum Methodologies", "Stakeholder Communication"],
# "UX/UI Designer": ["User Research", "Wireframing and Prototyping", "Design Principles", "Usability Testing"],
# "Quality Assurance (QA) Engineer": ["Testing Methodologies", "Automation Testing", "Bug Tracking", "Performance Testing"],
# "Blockchain Developer": ["Blockchain Fundamentals", "Smart Contracts", "Cryptographic Algorithms", "Decentralized Applications (DApps)"],
# "Digital Marketing Specialist": ["SEO/SEM", "Social Media Marketing", "Content Marketing", "Analytics and Reporting"],
# "AI Research Scientist": ["AI Theory", "Algorithm Development", "Neural Networks", "Natural Language Processing"],
# "AI Engineer": ["AI Model Deployment", "Machine Learning Engineering", "Deep Learning", "AI Tools and Frameworks"],
# "Generative AI Specialist (GenAI)": ["Generative Models", "GANs (Generative Adversarial Networks)", "Creative AI Applications", "Ethics in AI"],
# "Generative Business Intelligence Specialist (GenBI)": ["Automated Data Analysis", "Business Intelligence Tools", "Predictive Analytics", "AI in Business Strategy"]
# }
# levels = ['Beginner','Intermediate','Advanced']
# Question_Difficulty = ['Easy','Medium','Hard']
# st.header("Select AI:")
# model = st.radio("Model", [ "Gemini","Open AI",])
# st.write("Selected option:", model)
# # Header and description
# st.title("Interview Practice Bot π")
# st.text("Choose the role and topic for your Interview.")
# # User input for quiz generation
# ## Layout in columns
# col4, col1, col2 = st.columns([1, 1, 1])
# col5, col3 = st.columns([1, 1])
# with col4:
# selected_level = st.selectbox('Select level of understanding', levels)
# with col1:
# selected_topic_level = st.selectbox('Select Role', list(roles_and_topics.keys()))
# with col2:
# selected_topic = st.selectbox('Select Topic', roles_and_topics[selected_topic_level])
# with col5:
# selected_Question_Difficulty = st.selectbox('Select Question Difficulty', Question_Difficulty)
# with col3:
# num_quizzes = st.slider('Number of Questions', min_value=1, max_value= 10, value=1)
# submit = st.button('Generate Questions')
# st.write(selected_topic_level, selected_topic, num_quizzes, selected_Question_Difficulty, selected_level, model)
# # Final Response
# if submit:
# questions,answers = GetLLMResponse(selected_topic_level, selected_topic, num_quizzes, selected_Question_Difficulty, selected_level, model)
# with st.spinner("Generating Quizzes..."):
# questions,answers = GetLLMResponse(selected_topic_level, selected_topic, num_quizzes, selected_Question_Difficulty, selected_level, model)
# st.success("Quizzes Generated!")
# # Display questions and answers in a table
# if questions:
# st.subheader("Quiz Questions and Answers:")
# # Prepare data for the table
# col1, col2 = st.columns(2)
# with col1:
# st.subheader("Questions")
# st.write(questions)
# with col2:
# st.subheader("Answers")
# st.write(answers)
# else:
# st.warning("No Quiz Questions and Answers")
# else:
# st.warning("Click the 'Generate Quizzes' button to create quizzes.")
# if __name__ == "__main__":
# main()
import openai
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
import re
def generate_question(role, topic, difficulty_level):
prompt = f"Generate an interview question for the role of {role} on the topic of {topic} with difficulty level {difficulty_level}."
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GOOGLE_API_KEY"])
response = llm.invoke(prompt)
response = response.content
return response
def evaluate_answer(question, user_answer):
prompt = f"Question: {question}\nUser's Answer: {user_answer}\nEvaluate the answer and provide feedback. Also, provide the best possible answer."
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GOOGLE_API_KEY"])
response = llm.invoke(prompt)
response = response.content
return response
# ----------------------
import openai
import streamlit as st
# Set your OpenAI API key
openai.api_key = "YOUR_OPENAI_API_KEY"
def generate_question(role, topic, difficulty_level):
prompt = f"Generate an interview question for the role of {role} on the topic of {topic} with difficulty level {difficulty_level}."
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GOOGLE_API_KEY"])
response = llm.invoke(prompt)
response = response.content
return response
def evaluate_answer(question, user_answer):
prompt = f"Question: {question}\nUser's Answer: {user_answer}\nEvaluate the answer, give a score out of 100, and provide feedback. Also, provide the best possible answer."
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=st.secrets["GOOGLE_API_KEY"])
response = llm.invoke(prompt)
evaluation = response.content
# Extract score and feedback from the evaluation
# Extract score using regular expressions
score_match = re.search(r'(\d+)/100', evaluation)
score = int(score_match.group(1)) if score_match else 0
# Extract feedback
feedback = evaluation.split('\n', 1)[1] if '\n' in evaluation else evaluation
return score, feedback
def generate_report():
st.write("### Interview Report")
for i in range(st.session_state['total_questions']):
st.write(f"**Question {i+1}:** {st.session_state['questions'][i]}")
st.write(f"**Your Answer:** {st.session_state['answers'][i]}")
st.write(f"**Score:** {st.session_state['scores'][i]}")
st.write(f"**Feedback:** {st.session_state['feedback'][i]}")
st.write("---")
# Initialize session state
if 'questions' not in st.session_state:
st.session_state['questions'] = []
if 'answers' not in st.session_state:
st.session_state['answers'] = []
if 'feedback' not in st.session_state:
st.session_state['feedback'] = []
if 'scores' not in st.session_state:
st.session_state['scores'] = []
if 'current_question' not in st.session_state:
st.session_state['current_question'] = 0
if 'total_questions' not in st.session_state:
st.session_state['total_questions'] = 10
if 'question_answered' not in st.session_state:
st.session_state['question_answered'] = False
if 'interview_started' not in st.session_state:
st.session_state['interview_started'] = False
st.title("Mock Interview Bot")
if not st.session_state['interview_started']:
roles_and_topics = {
"Front-End Developer": ["HTML/CSS", "JavaScript and Frameworks (React, Angular, Vue.js)", "Responsive Design", "Browser Compatibility"],
"Back-End Developer": ["Server-Side Languages (Node.js, Python, Ruby, PHP)", "Database Management (SQL, NoSQL)", "API Development", "Server and Hosting Management"],
"Full-Stack Developer": ["Combination of Front-End and Back-End Topics", "Integration of Systems", "DevOps Basics"],
"Mobile Developer": ["Android Development (Java, Kotlin)", "iOS Development (Swift, Objective-C)", "Cross-Platform Development (Flutter, React Native)"],
"Data Scientist": ["Statistical Analysis", "Machine Learning Algorithms", "Data Wrangling and Cleaning", "Data Visualization"],
"Data Analyst": ["Data Collection and Processing", "SQL and Database Querying", "Data Visualization Tools (Tableau, Power BI)", "Basic Statistics"],
"Machine Learning Engineer": ["Supervised and Unsupervised Learning", "Model Deployment", "Deep Learning", "Natural Language Processing"],
"DevOps Engineer": ["Continuous Integration/Continuous Deployment (CI/CD)", "Containerization (Docker, Kubernetes)", "Infrastructure as Code (Terraform, Ansible)", "Cloud Platforms (AWS, Azure, Google Cloud)"],
"Cloud Engineer": ["Cloud Architecture", "Cloud Services (Compute, Storage, Networking)", "Security in the Cloud", "Cost Management"],
"Cybersecurity Analyst": ["Threat Detection and Mitigation", "Security Protocols and Encryption", "Network Security", "Incident Response"],
"Penetration Tester": ["Vulnerability Assessment", "Ethical Hacking Techniques", "Security Tools (Metasploit, Burp Suite)", "Report Writing and Documentation"],
"Project Manager": ["Project Planning and Scheduling", "Risk Management", "Agile and Scrum Methodologies", "Stakeholder Communication"],
"UX/UI Designer": ["User Research", "Wireframing and Prototyping", "Design Principles", "Usability Testing"],
"Quality Assurance (QA) Engineer": ["Testing Methodologies", "Automation Testing", "Bug Tracking", "Performance Testing"],
"Blockchain Developer": ["Blockchain Fundamentals", "Smart Contracts", "Cryptographic Algorithms", "Decentralized Applications (DApps)"],
"Digital Marketing Specialist": ["SEO/SEM", "Social Media Marketing", "Content Marketing", "Analytics and Reporting"],
"AI Research Scientist": ["AI Theory", "Algorithm Development", "Neural Networks", "Natural Language Processing"],
"AI Engineer": ["AI Model Deployment", "Machine Learning Engineering", "Deep Learning", "AI Tools and Frameworks"],
"Generative AI Specialist (GenAI)": ["Generative Models", "GANs (Generative Adversarial Networks)", "Creative AI Applications", "Ethics in AI"],
"Generative Business Intelligence Specialist (GenBI)": ["Automated Data Analysis", "Business Intelligence Tools", "Predictive Analytics", "AI in Business Strategy"]
}
role = st.selectbox('Select Role', list(roles_and_topics.keys()))
topic = st.selectbox('Select Topic', roles_and_topics[role])
difficulty_level = st.selectbox("Select difficulty level:", ["Easy", "Medium", "Hard"])
if st.button("Start Interview"):
if role and topic and difficulty_level:
st.session_state['questions'] = [generate_question(role, topic, difficulty_level) for _ in range(st.session_state['total_questions'])]
st.session_state['current_question'] = 0
st.session_state['interview_started'] = True
st.session_state['question_answered'] = False
if st.session_state['interview_started']:
current_question = st.session_state['current_question']
if current_question < st.session_state['total_questions']:
st.write(f"Question {current_question + 1}: {st.session_state['questions'][current_question]}")
if not st.session_state['question_answered']:
answer = st.text_area("Your Answer:", key=f"answer_{current_question}")
if st.button("Submit Answer"):
if answer:
st.session_state['answers'].append(answer)
score, feedback = evaluate_answer(st.session_state['questions'][current_question], answer)
st.session_state['scores'].append(score)
st.session_state['feedback'].append(feedback)
st.session_state['question_answered'] = True
st.write(f"Score: {score}")
st.write(f"Feedback: {feedback}")
if st.session_state['question_answered']:
if st.button("Next Question"):
st.session_state['current_question'] += 1
st.session_state['question_answered'] = False
else:
st.write("Interview Complete! Generating Report...")
generate_report()
|