Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from llama_index import SimpleDirectoryReader, GPTSimpleVectorIndex, LLMPredictor, ServiceContext, PromptHelper
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Load environment variables from .env file
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Get Hugging Face API key from environment variable
|
12 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
13 |
+
|
14 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
15 |
+
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
16 |
+
|
17 |
+
|
18 |
+
def query(payload):
|
19 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
def init_index(directory_path):
|
23 |
+
# Model parameters
|
24 |
+
max_input_size = 4096
|
25 |
+
num_outputs = 512
|
26 |
+
max_chunk_overlap = 20
|
27 |
+
chunk_size_limit = 600
|
28 |
+
|
29 |
+
# Prompt helper and predictor
|
30 |
+
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
31 |
+
llm_predictor = LLMPredictor(llm=query)
|
32 |
+
|
33 |
+
# Read documents from the "docs" folder
|
34 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
35 |
+
|
36 |
+
# Initialize index with document data
|
37 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
38 |
+
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
|
39 |
+
|
40 |
+
# Save the created index
|
41 |
+
index.save_to_disk('index.json')
|
42 |
+
|
43 |
+
return index
|
44 |
+
|
45 |
+
def chatbot(input_text):
|
46 |
+
# Load index
|
47 |
+
index = GPTSimpleVectorIndex.load_from_disk('index.json')
|
48 |
+
|
49 |
+
# Get response for the question
|
50 |
+
response = index.query(input_text, response_mode="compact")
|
51 |
+
|
52 |
+
return response.response
|
53 |
+
|
54 |
+
# Create index
|
55 |
+
init_index("docs")
|
56 |
+
|
57 |
+
# Create UI interface to interact with the Hugging Face model
|
58 |
+
iface = gr.Interface(fn=chatbot,
|
59 |
+
inputs=gr.components.Textbox(lines=7, placeholder="Enter your question here"),
|
60 |
+
outputs="text",
|
61 |
+
title="Frost AI ChatBot: Your Knowledge Companion Powered by Hugging Face",
|
62 |
+
description="Ask any question about rahasak research papers",
|
63 |
+
allow_screenshot=True)
|
64 |
+
iface.launch(share=True)
|