Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
-
import cv2
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
|
|
|
| 4 |
import torch
|
| 5 |
import torchaudio
|
| 6 |
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
| 7 |
import torchvision.transforms as transforms
|
| 8 |
from PIL import Image
|
| 9 |
-
import numpy as np
|
| 10 |
-
import soundfile as sf
|
| 11 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 12 |
|
| 13 |
class FasterRCNNDetector:
|
|
@@ -54,23 +52,9 @@ class JarvisModels:
|
|
| 54 |
self.model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 55 |
|
| 56 |
async def generate_response(self, prompt):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
max_new_tokens=256,
|
| 61 |
-
top_p=0.95,
|
| 62 |
-
repetition_penalty=1,
|
| 63 |
-
do_sample=True,
|
| 64 |
-
seed=42,
|
| 65 |
-
)
|
| 66 |
-
formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
|
| 67 |
-
stream = self.client1.text_generation(
|
| 68 |
-
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
| 69 |
-
output = ""
|
| 70 |
-
for response in stream:
|
| 71 |
-
output += response.token.text
|
| 72 |
-
|
| 73 |
-
return output
|
| 74 |
|
| 75 |
async def transcribe_audio(self, audio_file):
|
| 76 |
input_audio, _ = torchaudio.load(audio_file)
|
|
@@ -80,12 +64,36 @@ class JarvisModels:
|
|
| 80 |
transcription = self.processor.batch_decode(predicted_ids)
|
| 81 |
return transcription[0]
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
detector = FasterRCNNDetector()
|
| 84 |
|
| 85 |
iface = gr.Interface(
|
| 86 |
-
fn=[detector.detect_objects, JarvisModels().transcribe_audio],
|
| 87 |
-
inputs=
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
title="Vision and Speech Interface",
|
| 90 |
description="This interface detects objects in the webcam feed and transcribes speech recorded through the microphone."
|
| 91 |
)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
+
import cv2
|
| 4 |
import torch
|
| 5 |
import torchaudio
|
| 6 |
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
| 7 |
import torchvision.transforms as transforms
|
| 8 |
from PIL import Image
|
|
|
|
|
|
|
| 9 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 10 |
|
| 11 |
class FasterRCNNDetector:
|
|
|
|
| 52 |
self.model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 53 |
|
| 54 |
async def generate_response(self, prompt):
|
| 55 |
+
# Logika untuk menghasilkan tanggapan
|
| 56 |
+
response = gr.Interface.load("models/openai-community/gpt2").process(prompt)
|
| 57 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
async def transcribe_audio(self, audio_file):
|
| 60 |
input_audio, _ = torchaudio.load(audio_file)
|
|
|
|
| 64 |
transcription = self.processor.batch_decode(predicted_ids)
|
| 65 |
return transcription[0]
|
| 66 |
|
| 67 |
+
def transcribe(audio):
|
| 68 |
+
global messages
|
| 69 |
+
|
| 70 |
+
audio_file = open(audio, "rb")
|
| 71 |
+
# Transkripsi audio secara lokal (Anda dapat menambahkan logika transkripsi sesuai kebutuhan)
|
| 72 |
+
transcript = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
|
| 73 |
+
|
| 74 |
+
# Logika tanggapan (Anda dapat menambahkan logika untuk menghasilkan tanggapan sesuai kebutuhan)
|
| 75 |
+
system_message = {"role": "system", "content": "Lorem ipsum dolor sit amet, consectetur adipiscing elit."}
|
| 76 |
+
|
| 77 |
+
subprocess.call(["say", system_message['content']])
|
| 78 |
+
|
| 79 |
+
chat_transcript = "User: " + transcript + "\n\n" + "System: " + system_message['content'] + "\n\n"
|
| 80 |
+
|
| 81 |
+
return chat_transcript
|
| 82 |
+
|
| 83 |
detector = FasterRCNNDetector()
|
| 84 |
|
| 85 |
iface = gr.Interface(
|
| 86 |
+
fn=[detector.detect_objects, JarvisModels().transcribe_audio, JarvisModels().generate_response, transcribe],
|
| 87 |
+
inputs=[
|
| 88 |
+
gr.inputs.Video(label="Webcam", parameters={"fps": 30}),
|
| 89 |
+
gr.inputs.Audio(source="microphone", type="filepath")
|
| 90 |
+
],
|
| 91 |
+
outputs=[
|
| 92 |
+
gr.outputs.Image(),
|
| 93 |
+
"text",
|
| 94 |
+
"text",
|
| 95 |
+
"text"
|
| 96 |
+
],
|
| 97 |
title="Vision and Speech Interface",
|
| 98 |
description="This interface detects objects in the webcam feed and transcribes speech recorded through the microphone."
|
| 99 |
)
|