Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,13 @@ import cv2
|
|
2 |
import gradio as gr
|
3 |
import tempfile
|
4 |
import torch
|
|
|
5 |
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
6 |
import torchvision.transforms as transforms
|
7 |
from PIL import Image
|
8 |
import numpy as np
|
9 |
import soundfile as sf
|
|
|
10 |
|
11 |
class FasterRCNNDetector:
|
12 |
def __init__(self):
|
@@ -49,8 +51,8 @@ class FasterRCNNDetector:
|
|
49 |
class JarvisModels:
|
50 |
def __init__(self):
|
51 |
self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
52 |
-
self.
|
53 |
-
self.model.
|
54 |
|
55 |
async def generate_response(self, prompt):
|
56 |
generate_kwargs = dict(
|
@@ -74,20 +76,18 @@ class JarvisModels:
|
|
74 |
communicate.save(tmp_path)
|
75 |
return tmp_path
|
76 |
|
77 |
-
def transcribe_audio(audio_file):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
response_model = await jarvis.generate_response("Hello, I see some interesting objects!")
|
85 |
-
return response_model
|
86 |
|
87 |
detector = FasterRCNNDetector()
|
88 |
|
89 |
iface = gr.Interface(
|
90 |
-
fn=[detector.detect_objects, transcribe_audio],
|
91 |
inputs=gr.inputs.Video(label="Webcam", parameters={"fps": 30}),
|
92 |
outputs=[gr.outputs.Image(), "text"],
|
93 |
title="Vision and Speech Interface",
|
|
|
2 |
import gradio as gr
|
3 |
import tempfile
|
4 |
import torch
|
5 |
+
import torchaudio
|
6 |
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
7 |
import torchvision.transforms as transforms
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
10 |
import soundfile as sf
|
11 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
12 |
|
13 |
class FasterRCNNDetector:
|
14 |
def __init__(self):
|
|
|
51 |
class JarvisModels:
|
52 |
def __init__(self):
|
53 |
self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
54 |
+
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
55 |
+
self.model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
56 |
|
57 |
async def generate_response(self, prompt):
|
58 |
generate_kwargs = dict(
|
|
|
76 |
communicate.save(tmp_path)
|
77 |
return tmp_path
|
78 |
|
79 |
+
async def transcribe_audio(self, audio_file):
|
80 |
+
input_audio, _ = torchaudio.load(audio_file)
|
81 |
+
input_values = self.processor(input_audio, return_tensors="pt").input_values
|
82 |
+
logits = self.model(input_values).logits
|
83 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
84 |
+
transcription = self.processor.batch_decode(predicted_ids)
|
85 |
+
return transcription[0]
|
|
|
|
|
86 |
|
87 |
detector = FasterRCNNDetector()
|
88 |
|
89 |
iface = gr.Interface(
|
90 |
+
fn=[detector.detect_objects, JarvisModels().transcribe_audio],
|
91 |
inputs=gr.inputs.Video(label="Webcam", parameters={"fps": 30}),
|
92 |
outputs=[gr.outputs.Image(), "text"],
|
93 |
title="Vision and Speech Interface",
|