Commit
·
dfaea05
1
Parent(s):
d44229e
up
Browse files
app.py
CHANGED
|
@@ -1,53 +1,11 @@
|
|
| 1 |
-
from diffusers import
|
| 2 |
-
StableDiffusionPipeline,
|
| 3 |
-
StableDiffusionImg2ImgPipeline,
|
| 4 |
-
DPMSolverMultistepScheduler,
|
| 5 |
-
)
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
-
from PIL import Image
|
| 9 |
import time
|
| 10 |
import psutil
|
| 11 |
-
import random
|
| 12 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 13 |
|
| 14 |
|
| 15 |
start_time = time.time()
|
| 16 |
-
current_steps = 25
|
| 17 |
-
|
| 18 |
-
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
class Model:
|
| 22 |
-
def __init__(self, name, path=""):
|
| 23 |
-
self.name = name
|
| 24 |
-
self.path = path
|
| 25 |
-
|
| 26 |
-
if path != "":
|
| 27 |
-
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
|
| 28 |
-
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
|
| 29 |
-
)
|
| 30 |
-
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 31 |
-
self.pipe_t2i.scheduler.config
|
| 32 |
-
)
|
| 33 |
-
self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components)
|
| 34 |
-
else:
|
| 35 |
-
self.pipe_t2i = None
|
| 36 |
-
self.pipe_i2i = None
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
models = [
|
| 40 |
-
Model("Protogen v2.2 (Anime)", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
| 41 |
-
Model("Protogen x3.4 (Photorealism)", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
| 42 |
-
Model("Protogen x5.3 (Photorealism)", "darkstorm2150/Protogen_x5.3_Official_Release"),
|
| 43 |
-
Model("Protogen x5.8 Rebuilt (Scifi+Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
| 44 |
-
Model("Protogen Dragon (RPG Model)", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
| 45 |
-
Model("Protogen Nova", "darkstorm2150/Protogen_Nova_Official_Release"),
|
| 46 |
-
Model("Protogen Eclipse", "darkstorm2150/Protogen_Eclipse_Official_Release"),
|
| 47 |
-
Model("Protogen Infinity", "darkstorm2150/Protogen_Infinity_Official_Release"),
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
MODELS = {m.name: m for m in models}
|
| 51 |
|
| 52 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 53 |
|
|
@@ -62,263 +20,80 @@ def error_str(error, title="Error"):
|
|
| 62 |
|
| 63 |
|
| 64 |
def inference(
|
| 65 |
-
|
|
|
|
| 66 |
prompt,
|
| 67 |
-
guidance,
|
| 68 |
-
steps,
|
| 69 |
-
n_images=1,
|
| 70 |
-
width=512,
|
| 71 |
-
height=512,
|
| 72 |
-
seed=0,
|
| 73 |
-
img=None,
|
| 74 |
-
strength=0.5,
|
| 75 |
-
neg_prompt="",
|
| 76 |
):
|
| 77 |
|
| 78 |
print(psutil.virtual_memory()) # print memory usage
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
generator = torch.Generator("cuda").manual_seed(seed)
|
| 84 |
-
|
| 85 |
-
try:
|
| 86 |
-
if img is not None:
|
| 87 |
-
return (
|
| 88 |
-
img_to_img(
|
| 89 |
-
model_name,
|
| 90 |
-
prompt,
|
| 91 |
-
n_images,
|
| 92 |
-
neg_prompt,
|
| 93 |
-
img,
|
| 94 |
-
strength,
|
| 95 |
-
guidance,
|
| 96 |
-
steps,
|
| 97 |
-
width,
|
| 98 |
-
height,
|
| 99 |
-
generator,
|
| 100 |
-
seed,
|
| 101 |
-
),
|
| 102 |
-
f"Done. Seed: {seed}",
|
| 103 |
-
)
|
| 104 |
-
else:
|
| 105 |
-
return (
|
| 106 |
-
txt_to_img(
|
| 107 |
-
model_name,
|
| 108 |
-
prompt,
|
| 109 |
-
n_images,
|
| 110 |
-
neg_prompt,
|
| 111 |
-
guidance,
|
| 112 |
-
steps,
|
| 113 |
-
width,
|
| 114 |
-
height,
|
| 115 |
-
generator,
|
| 116 |
-
seed,
|
| 117 |
-
),
|
| 118 |
-
f"Done. Seed: {seed}",
|
| 119 |
-
)
|
| 120 |
-
except Exception as e:
|
| 121 |
-
return None, error_str(e)
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
def txt_to_img(
|
| 125 |
-
model_name,
|
| 126 |
-
prompt,
|
| 127 |
-
n_images,
|
| 128 |
-
neg_prompt,
|
| 129 |
-
guidance,
|
| 130 |
-
steps,
|
| 131 |
-
width,
|
| 132 |
-
height,
|
| 133 |
-
generator,
|
| 134 |
-
seed,
|
| 135 |
-
):
|
| 136 |
-
pipe = MODELS[model_name].pipe_t2i
|
| 137 |
-
|
| 138 |
-
if torch.cuda.is_available():
|
| 139 |
-
pipe = pipe.to("cuda")
|
| 140 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 141 |
-
|
| 142 |
-
result = pipe(
|
| 143 |
-
prompt,
|
| 144 |
-
negative_prompt=neg_prompt,
|
| 145 |
-
num_images_per_prompt=n_images,
|
| 146 |
-
num_inference_steps=int(steps),
|
| 147 |
-
guidance_scale=guidance,
|
| 148 |
-
width=width,
|
| 149 |
-
height=height,
|
| 150 |
-
generator=generator,
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
pipe.to("cpu")
|
| 154 |
-
|
| 155 |
-
return replace_nsfw_images(result)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
def img_to_img(
|
| 159 |
-
model_name,
|
| 160 |
-
prompt,
|
| 161 |
-
n_images,
|
| 162 |
-
neg_prompt,
|
| 163 |
-
img,
|
| 164 |
-
strength,
|
| 165 |
-
guidance,
|
| 166 |
-
steps,
|
| 167 |
-
width,
|
| 168 |
-
height,
|
| 169 |
-
generator,
|
| 170 |
-
seed,
|
| 171 |
-
):
|
| 172 |
-
pipe = MODELS[model_name].pipe_i2i
|
| 173 |
-
|
| 174 |
-
if torch.cuda.is_available():
|
| 175 |
-
pipe = pipe.to("cuda")
|
| 176 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 177 |
|
| 178 |
-
|
| 179 |
-
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
prompt,
|
| 183 |
-
negative_prompt=neg_prompt,
|
| 184 |
-
num_images_per_prompt=n_images,
|
| 185 |
-
image=img,
|
| 186 |
-
num_inference_steps=int(steps),
|
| 187 |
-
strength=strength,
|
| 188 |
-
guidance_scale=guidance,
|
| 189 |
-
generator=generator,
|
| 190 |
-
)
|
| 191 |
-
|
| 192 |
-
pipe.to("cpu")
|
| 193 |
-
|
| 194 |
-
return replace_nsfw_images(result)
|
| 195 |
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
|
| 204 |
with gr.Blocks(css="style.css") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
with gr.Row():
|
| 206 |
|
| 207 |
with gr.Column(scale=55):
|
| 208 |
with gr.Group():
|
| 209 |
-
|
| 210 |
label="Repo id on Hub",
|
| 211 |
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4",
|
| 212 |
)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
with gr.Row():
|
| 224 |
-
prompt = gr.Textbox(
|
| 225 |
-
label="Prompt",
|
| 226 |
-
show_label=False,
|
| 227 |
-
max_lines=2,
|
| 228 |
-
placeholder="Enter prompt.",
|
| 229 |
-
).style(container=False)
|
| 230 |
-
generate = gr.Button(value="Generate").style(
|
| 231 |
-
rounded=(False, True, True, False)
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
# image_out = gr.Image(height=512)
|
| 235 |
gallery = gr.Gallery(
|
| 236 |
label="Generated images", show_label=False, elem_id="gallery"
|
| 237 |
).style(grid=[2], height="auto")
|
| 238 |
|
| 239 |
-
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
|
| 240 |
-
container=False
|
| 241 |
-
)
|
| 242 |
error_output = gr.Markdown()
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
neg_prompt = gr.Textbox(
|
| 248 |
-
label="Negative prompt",
|
| 249 |
-
placeholder="What to exclude from the image",
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
n_images = gr.Slider(
|
| 253 |
-
label="Images", value=1, minimum=1, maximum=4, step=1
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
with gr.Row():
|
| 257 |
-
guidance = gr.Slider(
|
| 258 |
-
label="Guidance scale", value=7.5, maximum=15
|
| 259 |
-
)
|
| 260 |
-
steps = gr.Slider(
|
| 261 |
-
label="Steps",
|
| 262 |
-
value=current_steps,
|
| 263 |
-
minimum=2,
|
| 264 |
-
maximum=75,
|
| 265 |
-
step=1,
|
| 266 |
-
)
|
| 267 |
-
|
| 268 |
-
with gr.Row():
|
| 269 |
-
width = gr.Slider(
|
| 270 |
-
label="Width", value=512, minimum=64, maximum=1024, step=8
|
| 271 |
-
)
|
| 272 |
-
height = gr.Slider(
|
| 273 |
-
label="Height", value=512, minimum=64, maximum=1024, step=8
|
| 274 |
-
)
|
| 275 |
-
|
| 276 |
-
seed = gr.Slider(
|
| 277 |
-
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
with gr.Tab("Image to image"):
|
| 281 |
-
with gr.Group():
|
| 282 |
-
image = gr.Image(
|
| 283 |
-
label="Image", height=256, tool="editor", type="pil"
|
| 284 |
-
)
|
| 285 |
-
strength = gr.Slider(
|
| 286 |
-
label="Transformation strength",
|
| 287 |
-
minimum=0,
|
| 288 |
-
maximum=1,
|
| 289 |
-
step=0.01,
|
| 290 |
-
value=0.5,
|
| 291 |
-
)
|
| 292 |
|
| 293 |
inputs = [
|
| 294 |
-
|
|
|
|
| 295 |
prompt,
|
| 296 |
-
guidance,
|
| 297 |
-
steps,
|
| 298 |
-
n_images,
|
| 299 |
-
width,
|
| 300 |
-
height,
|
| 301 |
-
seed,
|
| 302 |
-
image,
|
| 303 |
-
strength,
|
| 304 |
-
neg_prompt,
|
| 305 |
]
|
| 306 |
outputs = [gallery, error_output]
|
| 307 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 308 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 309 |
|
| 310 |
-
gr.HTML(
|
| 311 |
-
"""
|
| 312 |
-
<div style="border-top: 1px solid #303030;">
|
| 313 |
-
<br>
|
| 314 |
-
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
| 315 |
-
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
| 316 |
-
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
| 317 |
-
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
| 318 |
-
</div>
|
| 319 |
-
"""
|
| 320 |
-
)
|
| 321 |
-
|
| 322 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 323 |
|
| 324 |
demo.queue(concurrency_count=1)
|
|
|
|
| 1 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
| 4 |
import time
|
| 5 |
import psutil
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 11 |
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def inference(
|
| 23 |
+
repo_id,
|
| 24 |
+
pr,
|
| 25 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
):
|
| 27 |
|
| 28 |
print(psutil.virtual_memory()) # print memory usage
|
| 29 |
|
| 30 |
+
seed = 0
|
| 31 |
+
torch_device = "cuda" if "GPU" in device else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
generator = torch.Generator(torch_device).manual_seed(seed)
|
|
|
|
| 34 |
|
| 35 |
+
dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
try:
|
| 38 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, revision=pr, torch_dtype=dtype)
|
| 39 |
+
pipe.to(torch_device)
|
| 40 |
|
| 41 |
+
return pipe(prompt, generator=generator, num_inference_steps=25).images
|
| 42 |
+
except Exception as e:
|
| 43 |
+
url = f"https://huggingface.co/{repo_id}/discussions/{pr.split('/')[-1]}"
|
| 44 |
+
message = f"There is a problem with your diffusers weights of the PR: {url}. Error message: \n"
|
| 45 |
+
return None, error_str(message + e)
|
| 46 |
|
| 47 |
|
| 48 |
with gr.Blocks(css="style.css") as demo:
|
| 49 |
+
gr.HTML(
|
| 50 |
+
f"""
|
| 51 |
+
<div class="diffusion">
|
| 52 |
+
<p>
|
| 53 |
+
Space to test whether `diffusers` PRs work.
|
| 54 |
+
</p>
|
| 55 |
+
<p>
|
| 56 |
+
Running on <b>{device}</b>
|
| 57 |
+
</p>
|
| 58 |
+
</div>
|
| 59 |
+
"""
|
| 60 |
+
)
|
| 61 |
with gr.Row():
|
| 62 |
|
| 63 |
with gr.Column(scale=55):
|
| 64 |
with gr.Group():
|
| 65 |
+
repo_id = gr.Textbox(
|
| 66 |
label="Repo id on Hub",
|
| 67 |
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4",
|
| 68 |
)
|
| 69 |
+
pr = gr.Textbox(
|
| 70 |
+
label="PR branch",
|
| 71 |
+
placeholder="PR branch that should be checked, e.g. refs/pr/171",
|
| 72 |
+
)
|
| 73 |
+
prompt = gr.Textbox(
|
| 74 |
+
label="Prompt",
|
| 75 |
+
default="An astronaut riding a horse on Mars.",
|
| 76 |
+
placeholder="Enter prompt.",
|
| 77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
gallery = gr.Gallery(
|
| 79 |
label="Generated images", show_label=False, elem_id="gallery"
|
| 80 |
).style(grid=[2], height="auto")
|
| 81 |
|
|
|
|
|
|
|
|
|
|
| 82 |
error_output = gr.Markdown()
|
| 83 |
|
| 84 |
+
generate = gr.Button(value="Generate").style(
|
| 85 |
+
rounded=(False, True, True, False)
|
| 86 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
inputs = [
|
| 89 |
+
repo_id,
|
| 90 |
+
pr,
|
| 91 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
]
|
| 93 |
outputs = [gallery, error_output]
|
| 94 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 95 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 98 |
|
| 99 |
demo.queue(concurrency_count=1)
|