File size: 6,726 Bytes
16c1fe3
 
 
 
 
 
 
 
 
1957874
16c1fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import transformers
import gradio as gr
from transformers import pipeline, DonutProcessor, VisionEncoderDecoderModel, AutoTokenizer, AutoModelForSequenceClassification, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image
import torch
import speech_recognition as sr
from pydub import AudioSegment
import os
import re
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2",force_download=True)
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")


task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]

# Image Classification Model
image_classifier = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")


# Sentiment Analysis Model
sentiment_pipeline = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")

# Text Categorization Model
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-mnli")
nli_model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
nli_pipeline = pipeline("zero-shot-classification", model=nli_model, tokenizer=tokenizer)

# Function for Image Recognition
def image_recognition(image):
    try:
        result = image_classifier(image)
        output = "<h4>Image Details:</h4><ul>"
        for item in result:
            output +=  f"<li>Discription: {result[0]['generated_text']}</li>"
        output += "</ul>"
        return output
    except Exception as e:
        return f"<b>Error in Image Recognition:</b> {str(e)}"


# Function to extract text from an image using Donut
def extract_text_from_image(input_img):
    try:
      pixel_values = processor(input_img, return_tensors="pt").pixel_values
      device = "cuda" if torch.cuda.is_available() else "cpu"
      model.to(device)
      outputs = model.generate(pixel_values.to(device),
                               decoder_input_ids=decoder_input_ids.to(device),
                               max_length=model.decoder.config.max_position_embeddings,
                               early_stopping=True,
                               pad_token_id=processor.tokenizer.pad_token_id,
                               eos_token_id=processor.tokenizer.eos_token_id,
                               use_cache=True,
                               num_beams=1,
                               bad_words_ids=[[processor.tokenizer.unk_token_id]],
                               return_dict_in_generate=True,
                               output_scores=True,)
      sequence = processor.batch_decode(outputs.sequences)[0]
      sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
      sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
      final=processor.token2json(sequence)

      return final

    except Exception as e:
        return {"error": str(e)}

# Function for Sentiment Analysis
def analyze_sentiment(feedback_text):
    try:
        sentiment_result = sentiment_pipeline(feedback_text)
        output = "<h4>Feedback Sentiment Analysis:</h4><ul>"
        for item in sentiment_result:
            output += f"<li>Label: {item['label']}, Score: {item['score']:.2f}</li>"
        output += "</ul>"
        return output
    except Exception as e:
        return f"<b>Error in Sentiment Analysis:</b> {str(e)}"

# Function for Text Categorization
def categorize_complaint(complaint_text):
    try:
        labels = ["coach cleanliness", "damage", "staff behavior", "safety", "delay", "other"]
        result = nli_pipeline(complaint_text, candidate_labels=labels)
        output = f"<h4>Complaint Categorization:</h4><p>Text: {result['sequence']}</p><ul>"
        for label, score in zip(result['labels'], result['scores']):
            output += f"<li>{label}: {score:.2f}</li>"
        output += "</ul>"
        return output
    except Exception as e:
        return f"<b>Error in Complaint Categorization:</b> {str(e)}"

# Function to Process Voice Input
def process_audio(audio):
    recognizer = sr.Recognizer()
    audio_file = audio  # The file path from Gradio

    # Convert audio to required format for processing
    try:
        sound = AudioSegment.from_file(audio_file)
        sound.export("temp.wav", format="wav")
    except Exception as e:
        return f"<b>Audio processing error:</b> {e}"

    with sr.AudioFile("temp.wav") as source:
        audio_data = recognizer.record(source)
        try:
            text = recognizer.recognize_google(audio_data)
            os.remove("temp.wav")  # Clean up temporary file
            return f"<h4>Transcribed Audio:</h4><p>{text}</p>"
        except sr.UnknownValueError:
            os.remove("temp.wav")  # Clean up temporary file
            return "<b>Could not understand the audio.</b>"
        except sr.RequestError as e:
            os.remove("temp.wav")  # Clean up temporary file
            return f"<b>Could not request results:</b> {e}"

# Gradio Interface Components
def main(image, complaint_text, feedback_text, audio):
    # Process Image
    image_results = image_recognition(image) if image else "<i>No image provided.</i>"

    # Process OCR Text
    ocr_text = extract_text_from_image(image) if image else "<i>No image provided.</i>"

    # Process Complaint Categorization
    categorized_complaint = categorize_complaint(complaint_text) if complaint_text else "<i>No complaint text provided.</i>"

    # Process Sentiment Analysis
    sentiment_result = analyze_sentiment(feedback_text) if feedback_text else "<i>No feedback text provided.</i>"

    # Process Audio Input
    audio_text = process_audio(audio) if audio else "<i>No audio provided.</i>"

    return f"{image_results}<br>{ocr_text}<br>{categorized_complaint}<br>{sentiment_result}<br>{audio_text}"

# Build Gradio UI
iface = gr.Interface(
    fn=main,
    inputs=[
        gr.Image(type="pil", label="Upload Complaint Image"),
        gr.Textbox(lines=5, placeholder="Enter Complaint Text", label="Complaint Text"),
        gr.Textbox(lines=2, placeholder="Enter Feedback Text", label="Feedback Text"),
        gr.Audio(type="filepath", label="Upload Audio Complaint")  # Use 'filepath' for audio input
    ],
    outputs=[
        gr.HTML(label="Results")  # Changed to HTML for more customization
    ],
    title="Rail Madad Complaint Resolution System",
    description="AI-powered system for automated categorization, prioritization, and response to complaints on Rail Madad."
)

iface.launch()

img=Image.open("/content/Tech Mahindra hiring process.png")
image_classifier(img)[0]["generated_text"]