Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import random
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from transformers import pipeline, AutoProcessor, Qwen2VLForConditionalGeneration, Blip2ForConditionalGeneration
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Function to simulate sensor data
|
11 |
+
def generate_sensor_data(num_entries):
|
12 |
+
data = []
|
13 |
+
timestamp = datetime.now()
|
14 |
+
for _ in range(num_entries):
|
15 |
+
entry = {
|
16 |
+
"timestamp": timestamp.strftime("%Y-%m-%d %H:%M:%S"),
|
17 |
+
"engine_temp": random.randint(80, 110),
|
18 |
+
"oil_pressure": random.randint(15, 50),
|
19 |
+
"tire_pressure": random.randint(29, 35),
|
20 |
+
"battery_voltage": round(random.uniform(11.0, 13.0), 1)
|
21 |
+
}
|
22 |
+
# Introduce anomalies
|
23 |
+
if random.random() < 0.1:
|
24 |
+
entry["engine_temp"] = random.randint(105, 120)
|
25 |
+
if random.random() < 0.1:
|
26 |
+
entry["oil_pressure"] = random.randint(10, 20)
|
27 |
+
if random.random() < 0.05:
|
28 |
+
entry["battery_voltage"] = round(random.uniform(10.5, 11.5), 1)
|
29 |
+
data.append(entry)
|
30 |
+
timestamp += timedelta(minutes=5)
|
31 |
+
return pd.DataFrame(data)
|
32 |
+
|
33 |
+
# Generate sensor data
|
34 |
+
sensor_data = generate_sensor_data(10)
|
35 |
+
|
36 |
+
# Plot sensor data
|
37 |
+
def plot_sensor_data(df):
|
38 |
+
timestamps = pd.to_datetime(df["timestamp"])
|
39 |
+
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
|
40 |
+
fig.suptitle('Sensor Data', fontsize=16)
|
41 |
+
|
42 |
+
thresholds = {"engine_temp": 100, "oil_pressure": 25, "tire_pressure": 28, "battery_voltage": 11.5}
|
43 |
+
|
44 |
+
axs[0, 0].plot(timestamps, df["engine_temp"], color='red')
|
45 |
+
axs[0, 0].axhline(y=thresholds["engine_temp"], color='green', linestyle='--')
|
46 |
+
axs[0, 0].set_title("Engine Temperature (°C)")
|
47 |
+
|
48 |
+
axs[0, 1].plot(timestamps, df["oil_pressure"], color='blue')
|
49 |
+
axs[0, 1].axhline(y=thresholds["oil_pressure"], color='orange', linestyle='--')
|
50 |
+
axs[0, 1].set_title("Oil Pressure (psi)")
|
51 |
+
|
52 |
+
axs[1, 0].plot(timestamps, df["tire_pressure"], color='green')
|
53 |
+
axs[1, 0].axhline(y=thresholds["tire_pressure"], color='purple', linestyle='--')
|
54 |
+
axs[1, 0].set_title("Tire Pressure (psi)")
|
55 |
+
|
56 |
+
axs[1, 1].plot(timestamps, df["battery_voltage"], color='black')
|
57 |
+
axs[1, 1].axhline(y=thresholds["battery_voltage"], color='brown', linestyle='--')
|
58 |
+
axs[1, 1].set_title("Battery Voltage (V)")
|
59 |
+
|
60 |
+
plt.tight_layout()
|
61 |
+
fig_path = "sensor_plot.png"
|
62 |
+
plt.savefig(fig_path)
|
63 |
+
return fig_path
|
64 |
+
|
65 |
+
# Initialize models
|
66 |
+
# def load_models():
|
67 |
+
# vqa_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl")
|
68 |
+
# damage_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
69 |
+
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
70 |
+
# return vqa_model, damage_model, processor
|
71 |
+
|
72 |
+
# vqa_model, damage_model, processor = load_models()
|
73 |
+
|
74 |
+
# Generate recommendations
|
75 |
+
def analyze_data(image, plot_path):
|
76 |
+
# Damage analysis
|
77 |
+
if image:
|
78 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": "Describe the damage."}]}]
|
79 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
80 |
+
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
|
81 |
+
inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
+
output_ids = damage_model.generate(**inputs, max_new_tokens=128)
|
83 |
+
damage_output = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
84 |
+
else:
|
85 |
+
damage_output = "No image uploaded."
|
86 |
+
|
87 |
+
# Graph analysis
|
88 |
+
vqa_result = vqa_model(image=plot_path, question="What anomalies or patterns can be observed?")
|
89 |
+
graph_analysis = vqa_result[0]["answer"]
|
90 |
+
|
91 |
+
# Recommendations
|
92 |
+
recommendations = f"Recommendations based on analysis:\n\n1. {graph_analysis}\n\n2. {damage_output}"
|
93 |
+
return recommendations, plot_path, graph_analysis
|
94 |
+
|
95 |
+
# Gradio UI
|
96 |
+
with gr.Blocks(css=".output-text { font-family: 'Arial'; color: #222; font-size: 1rem; }") as app:
|
97 |
+
gr.Markdown("# 🚗 Car Health Report Generation using Generative AI")
|
98 |
+
with gr.Row():
|
99 |
+
car_image = gr.Image(type="pil", label="Upload Car Part Damage Image")
|
100 |
+
with gr.Row():
|
101 |
+
display_graph = gr.Image(plot_sensor_data(sensor_data), label="Sensor Data Over Time")
|
102 |
+
recommendations = gr.Textbox(label="Analysis & Recommendations", placeholder="Insights will appear here...")
|
103 |
+
graph_insights = gr.Textbox(label="Graph Insights", placeholder="Graph insights will appear here...")
|
104 |
+
data_table = gr.Dataframe(sensor_data, label="Generated Sensor Data (Table View)", row_count=(10, "fixed"), interactive=False)
|
105 |
+
|
106 |
+
# Realistic colors and UI layout for a polished look
|
107 |
+
car_image.change(fn=analyze_data, inputs=[car_image, display_graph], outputs=[recommendations, display_graph, graph_insights])
|
108 |
+
|
109 |
+
app.launch()
|