import gradio from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch from scipy.special import softmax def predict(text): model_name = "deepset/bert-base-german-cased-hatespeech-GermEval18Coarse" short_score_descriptions = {0: "Kein Hasskommentar", 1: "Hasskommentar"} tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model_input = tokenizer(*([text],), padding=True, return_tensors="pt") with torch.no_grad(): output = model(**model_input) logits = softmax(output[0][0].detach().numpy()).tolist() return {short_score_descriptions[k]: v for k, v in enumerate(logits)} gradio.Interface( title="Klassifikator deutschsprachiger Hasskommentare", inputs=[ gradio.Textbox(label="Kommentar"), ], fn=predict, outputs=[ gradio.Label(label="Klassifikation"), ], ).launch()