|
import torch |
|
from torchvision import models, transforms |
|
from PIL import Image, ImageDraw, ImageFont |
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
MODEL_PATH = "cattle_breed_efficientnetb3_pytorch.pth" |
|
CLASS_NAMES = ["Gir", "Deoni", "Murrah"] |
|
|
|
|
|
|
|
|
|
model = models.efficientnet_b3(weights=None) |
|
model.classifier[1] = torch.nn.Linear(model.classifier[1].in_features, len(CLASS_NAMES)) |
|
|
|
|
|
|
|
|
|
checkpoint = torch.load(MODEL_PATH, map_location=device) |
|
|
|
checkpoint = {k: v for k, v in checkpoint.items() if "classifier" not in k} |
|
model.load_state_dict(checkpoint, strict=False) |
|
|
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((300, 300)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], |
|
[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
|
|
|
|
def predict(image): |
|
image = image.convert("RGB") |
|
img_tensor = transform(image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
output = model(img_tensor) |
|
probs = torch.nn.functional.softmax(output, dim=1) |
|
conf, pred_idx = torch.max(probs, dim=1) |
|
|
|
pred_label = CLASS_NAMES[pred_idx.item()] |
|
confidence = conf.item() * 100 |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
text = f"{pred_label} ({confidence:.2f}%)" |
|
draw.text((10, 10), text, fill="red", font=font) |
|
|
|
return image, text |
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Image(type="pil"), "text"], |
|
title="Indian Bovine Breed Classifier", |
|
description="Upload an image of a cow and get the breed prediction with confidence." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|