breedcow / app.py
dhe1raj's picture
Update app.py
d6ec985 verified
import torch
from torchvision import models, transforms
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
# =======================
# CONFIGURATION
# =======================
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_PATH = "cattle_breed_efficientnetb3_pytorch.pth" # Upload your .pth model here
CLASS_NAMES = ["Gir", "Deoni", "Murrah"]
# =======================
# MODEL: EfficientNetB3
# =======================
model = models.efficientnet_b3(weights=None)
model.classifier[1] = torch.nn.Linear(model.classifier[1].in_features, len(CLASS_NAMES))
# =======================
# LOAD CHECKPOINT (Feature Extractor Only)
# =======================
checkpoint = torch.load(MODEL_PATH, map_location=device)
# Remove classifier weights from checkpoint
checkpoint = {k: v for k, v in checkpoint.items() if "classifier" not in k}
model.load_state_dict(checkpoint, strict=False)
model.to(device)
model.eval()
# =======================
# IMAGE TRANSFORMS
# =======================
transform = transforms.Compose([
transforms.Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# =======================
# PREDICTION FUNCTION
# =======================
def predict(image):
image = image.convert("RGB")
img_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
output = model(img_tensor)
probs = torch.nn.functional.softmax(output, dim=1)
conf, pred_idx = torch.max(probs, dim=1)
pred_label = CLASS_NAMES[pred_idx.item()]
confidence = conf.item() * 100
# Draw label on image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
text = f"{pred_label} ({confidence:.2f}%)"
draw.text((10, 10), text, fill="red", font=font)
return image, text
# =======================
# GRADIO INTERFACE
# =======================
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), "text"],
title="Indian Bovine Breed Classifier",
description="Upload an image of a cow and get the breed prediction with confidence."
)
if __name__ == "__main__":
iface.launch()