Spaces:
Runtime error
Runtime error
File size: 3,941 Bytes
56be023 37615de 4171748 20d0c1e 37615de 56be023 37615de 1789e44 37615de fbb30c1 56be023 2d7f410 1b52f82 56be023 1b52f82 2d7f410 fbb30c1 6f27020 a024324 f9d0c71 56be023 b7a0604 56be023 b7a0604 56be023 b7a0604 56be023 b7a0604 6f27020 b7a0604 56be023 b7a0604 56be023 58c6bee 56be023 58c6bee 56be023 58c6bee 56be023 58c6bee e3f6fa0 56be023 e3f6fa0 56be023 6f27020 56be023 6f27020 56be023 37615de 56be023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import gradio as gr
import spaces
import torch
from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2PixPipeline
from loguru import logger
from PIL import Image
SUPPORTED_MODELS = [
"stabilityai/sdxl-turbo",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"timbrooks/instruct-pix2pix",
]
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-refiner-1.0"
model = os.environ.get("MODEL_ID", DEFAULT_MODEL)
gpu_duration = int(os.environ.get("GPU_DURATION", 60))
def load_pipeline(model):
pipeline_type = (
StableDiffusionInstructPix2PixPipeline
if model == "timbrooks/instruct-pix2pix"
else AutoPipelineForImage2Image
)
return pipeline_type.from_pretrained(
model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
logger.debug(f"Loading pipeline: {dict(model=model)}")
pipe = load_pipeline(model).to("cuda")
@logger.catch(reraise=True)
@spaces.GPU(duration=gpu_duration)
def infer(
prompt: str,
init_image: Image.Image,
negative_prompt: str,
strength: float,
num_inference_steps: int,
guidance_scale: float,
progress=gr.Progress(track_tqdm=True),
):
logger.info(
f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image)}"
)
# Downscale the image
init_image.thumbnail((1024, 1024))
additional_args = {
k: v
for k, v in dict(
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).items()
if v
}
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")
images = pipe(
prompt=prompt,
image=init_image,
negative_prompt=negative_prompt,
**additional_args,
).images
return images[0]
css = """
@media (max-width: 1280px) {
#images-container {
flex-direction: column;
}
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# Image-to-Image")
gr.Markdown(f"## Model: `{model}`")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row(elem_id="images-container"):
init_image = gr.Image(label="Initial image", type="pil")
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=0,
maximum=100,
step=1,
value=0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=100.0,
step=0.1,
value=0.0,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
init_image,
negative_prompt,
strength,
num_inference_steps,
guidance_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()
|