Spaces:
Sleeping
Sleeping
File size: 6,742 Bytes
f0ecf68 360658f f0ecf68 360658f 34a9bbc f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f f0ecf68 360658f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
from huggingface_hub import InferenceClient
import base64
import io
from PIL import Image
import requests
# Inicializaci贸n del cliente de inferencia con el modelo especificado
client = InferenceClient("mistralai/Pixtral-Large-Instruct-2411")
def image_to_base64(image_path):
"""Convert an image file to a base64 string."""
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return encoded_string
def base64_to_image(base64_string):
"""Convert a base64 string to an image."""
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
def describe_image(image, system_message, max_tokens, temperature, top_p):
"""Describe an image using the model."""
if image is None:
return "No image uploaded.", []
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": "Describe the following image:"},
{"role": "user", "content": image_base64}
]
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
return response, [(f"User: Describe the following image:", response)]
def respond(
user_message: str,
chat_history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Funci贸n para generar respuestas basadas en el historial de chat y par谩metros de configuraci贸n.
Args:
user_message (str): Mensaje del usuario.
chat_history (list[tuple[str, str]]): Historial de chat.
system_message (str): Mensaje del sistema que define el comportamiento del chatbot.
max_tokens (int): M谩ximo n煤mero de tokens a generar.
temperature (float): Temperatura para el muestreo de texto.
top_p (float): Par谩metro top-p para el muestreo de texto.
Yields:
str: Respuesta generada por el modelo.
"""
# Construcci贸n de la lista de mensajes
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in chat_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_message})
response = ""
try:
# Obtenci贸n de la respuesta del modelo
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"Error al obtener respuesta: {str(e)}"
def main():
"""
Funci贸n principal para iniciar la interfaz de chat.
"""
def update_chat(user_message, image, chat_history, system_message, max_tokens, temperature, top_p):
if image is not None:
description, new_history = describe_image(image, system_message, max_tokens, temperature, top_p)
chat_history.extend(new_history)
user_message = description
if user_message:
response_generator = respond(
user_message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
)
for response in response_generator:
chat_history.append((user_message, response))
yield "", chat_history, chat_history
else:
yield "", chat_history, chat_history
with gr.Blocks(title="Chatbot con MistralAI", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Chatbot con MistralAI")
gr.Markdown("Un chatbot amigable basado en el modelo MistralAI Pixtral-Large-Instruct-2411 que puede describir im谩genes y mantener un historial de chat.")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Conversaci贸n")
user_message = gr.Textbox(label="Mensaje del Usuario", placeholder="Escribe tu mensaje aqu铆...")
with gr.Row():
submit_button = gr.Button("Enviar")
clear_button = gr.Button("Limpiar")
with gr.Column(scale=2):
image_input = gr.Image(label="Cargar Imagen", type="pil")
image_description = gr.Textbox(label="Descripci贸n de la Imagen", interactive=False)
with gr.Row():
system_message = gr.Textbox(
value="You are a friendly Chatbot.",
label="Mensaje del Sistema",
placeholder="Define el comportamiento del chatbot."
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max New Tokens",
info="M谩ximo n煤mero de tokens generados."
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controla la creatividad de la respuesta."
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (Nucleus Sampling)",
info="Par谩metro para el muestreo del texto."
)
chat_history = gr.State([])
submit_button.click(
fn=update_chat,
inputs=[user_message, image_input, chat_history, system_message, max_tokens, temperature, top_p],
outputs=[user_message, chatbot, chat_history]
)
clear_button.click(
fn=lambda: ([], [], []),
inputs=[],
outputs=[user_message, chatbot, chat_history]
)
image_input.upload(
fn=describe_image,
inputs=[image_input, system_message, max_tokens, temperature, top_p],
outputs=[image_description, chat_history]
)
demo.launch()
if __name__ == "__main__":
main() |