Spaces:
Runtime error
Runtime error
Hugo Flores Garcia
commited on
Commit
·
3f6f517
1
Parent(s):
75a7169
critical sampling fix, two demoes for comparing old and new sampling
Browse files- conf/generated/bulgarian-tv-choir/c2f.yml +15 -0
- conf/generated/bulgarian-tv-choir/coarse.yml +8 -0
- conf/generated/bulgarian-tv-choir/interface.yml +7 -0
- conf/generated/panchos/c2f.yml +15 -0
- conf/generated/panchos/coarse.yml +8 -0
- conf/generated/panchos/interface.yml +7 -0
- conf/generated/titi-monkey/c2f.yml +15 -0
- conf/generated/titi-monkey/coarse.yml +8 -0
- conf/generated/titi-monkey/interface.yml +7 -0
- conf/interface/spotdl.yml +1 -1
- demo-new.py +518 -0
- demo.py +65 -5
- scripts/exp/train.py +6 -12
- scripts/utils/augment.py +53 -0
- vampnet/interface.py +46 -32
- vampnet/mask.py +1 -1
- vampnet/modules/transformer.py +288 -32
conf/generated/bulgarian-tv-choir/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/spotdl/c2f.pth
|
| 12 |
+
save_path: ./runs/bulgarian-tv-choir/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- /media/CHONK/hugo/loras/bulgarian-female-tv-choir/
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/bulgarian-tv-choir/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/spotdl/coarse.pth
|
| 5 |
+
save_path: ./runs/bulgarian-tv-choir/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- /media/CHONK/hugo/loras/bulgarian-female-tv-choir/
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/bulgarian-tv-choir/interface.yml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - /media/CHONK/hugo/loras/bulgarian-female-tv-choir/
|
| 3 |
+
Interface.coarse2fine_ckpt: ./models/spotdl/c2f.pth
|
| 4 |
+
Interface.coarse2fine_lora_ckpt: ./runs/bulgarian-tv-choir/c2f/latest/lora.pth
|
| 5 |
+
Interface.coarse_ckpt: ./models/spotdl/coarse.pth
|
| 6 |
+
Interface.coarse_lora_ckpt: ./runs/bulgarian-tv-choir/coarse/latest/lora.pth
|
| 7 |
+
Interface.codec_ckpt: ./models/spotdl/codec.pth
|
conf/generated/panchos/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/spotdl/c2f.pth
|
| 12 |
+
save_path: ./runs/panchos/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- /media/CHONK/hugo/loras/panchos/
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/panchos/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/spotdl/coarse.pth
|
| 5 |
+
save_path: ./runs/panchos/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- /media/CHONK/hugo/loras/panchos/
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/panchos/interface.yml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - /media/CHONK/hugo/loras/panchos/
|
| 3 |
+
Interface.coarse2fine_ckpt: ./models/spotdl/c2f.pth
|
| 4 |
+
Interface.coarse2fine_lora_ckpt: ./runs/panchos/c2f/latest/lora.pth
|
| 5 |
+
Interface.coarse_ckpt: ./models/spotdl/coarse.pth
|
| 6 |
+
Interface.coarse_lora_ckpt: ./runs/panchos/coarse/latest/lora.pth
|
| 7 |
+
Interface.codec_ckpt: ./models/spotdl/codec.pth
|
conf/generated/titi-monkey/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/spotdl/c2f.pth
|
| 12 |
+
save_path: ./runs/titi-monkey/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- /media/CHONK/hugo/loras/titi-monkey.mp3
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/titi-monkey/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/spotdl/coarse.pth
|
| 5 |
+
save_path: ./runs/titi-monkey/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- /media/CHONK/hugo/loras/titi-monkey.mp3
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/titi-monkey/interface.yml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - /media/CHONK/hugo/loras/titi-monkey.mp3
|
| 3 |
+
Interface.coarse2fine_ckpt: ./models/spotdl/c2f.pth
|
| 4 |
+
Interface.coarse2fine_lora_ckpt: ./runs/titi-monkey/c2f/latest/lora.pth
|
| 5 |
+
Interface.coarse_ckpt: ./models/spotdl/coarse.pth
|
| 6 |
+
Interface.coarse_lora_ckpt: ./runs/titi-monkey/coarse/latest/lora.pth
|
| 7 |
+
Interface.codec_ckpt: ./models/spotdl/codec.pth
|
conf/interface/spotdl.yml
CHANGED
|
@@ -7,6 +7,6 @@ Interface.coarse2fine_chunk_size_s: 3
|
|
| 7 |
|
| 8 |
|
| 9 |
AudioLoader.sources:
|
| 10 |
-
# - /media/CHONK/hugo/spotdl/subsets/jazz-blues
|
| 11 |
- /media/CHONK/null
|
| 12 |
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
AudioLoader.sources:
|
| 10 |
+
# - /media/CHONK/hugo/spotdl/subsets/jazz-blues/
|
| 11 |
- /media/CHONK/null
|
| 12 |
|
demo-new.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
import yaml
|
| 4 |
+
import tempfile
|
| 5 |
+
import uuid
|
| 6 |
+
from dataclasses import dataclass, asdict
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import audiotools as at
|
| 10 |
+
import argbind
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
from vampnet.interface import Interface
|
| 14 |
+
from vampnet import mask as pmask
|
| 15 |
+
|
| 16 |
+
import logging
|
| 17 |
+
logger = logging.getLogger()
|
| 18 |
+
logger.setLevel(logging.CRITICAL)
|
| 19 |
+
|
| 20 |
+
Interface = argbind.bind(Interface)
|
| 21 |
+
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
| 22 |
+
|
| 23 |
+
conf = argbind.parse_args()
|
| 24 |
+
|
| 25 |
+
with argbind.scope(conf):
|
| 26 |
+
interface = Interface()
|
| 27 |
+
loader = AudioLoader()
|
| 28 |
+
print(f"interface device is {interface.device}")
|
| 29 |
+
|
| 30 |
+
dataset = at.data.datasets.AudioDataset(
|
| 31 |
+
loader,
|
| 32 |
+
sample_rate=interface.codec.sample_rate,
|
| 33 |
+
duration=interface.coarse.chunk_size_s,
|
| 34 |
+
n_examples=5000,
|
| 35 |
+
without_replacement=True,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
checkpoints = {
|
| 40 |
+
"spotdl": {
|
| 41 |
+
"coarse": "./models/spotdl/coarse.pth",
|
| 42 |
+
"c2f": "./models/spotdl/c2f.pth",
|
| 43 |
+
"codec": "./models/spotdl/codec.pth",
|
| 44 |
+
"full_ckpt": True
|
| 45 |
+
},
|
| 46 |
+
"berta": {
|
| 47 |
+
"coarse": "./models/finetuned/berta-goldman-speech/coarse.pth",
|
| 48 |
+
"c2f": "./models/finetuned/berta-goldman-speech/c2f.pth",
|
| 49 |
+
"codec": "./model/spotdl/codec.pth",
|
| 50 |
+
"full_ckpt": True
|
| 51 |
+
},
|
| 52 |
+
"xeno-canto-2": {
|
| 53 |
+
"coarse": "./models/finetuned/xeno-canto-2/coarse.pth",
|
| 54 |
+
"c2f": "./models/finetuned/xeno-canto-2/c2f.pth",
|
| 55 |
+
"codec": "./models/spotdl/codec.pth",
|
| 56 |
+
"full_ckpt": True
|
| 57 |
+
},
|
| 58 |
+
"panchos": {
|
| 59 |
+
"coarse": "./models/finetuned/panchos/coarse.pth",
|
| 60 |
+
"c2f": "./models/finetuned/panchos/c2f.pth",
|
| 61 |
+
"codec": "./models/spotdl/codec.pth",
|
| 62 |
+
"full_ckpt": False
|
| 63 |
+
},
|
| 64 |
+
"tv-choir": {
|
| 65 |
+
"coarse": "./models/finetuned/tv-choir/coarse.pth",
|
| 66 |
+
"c2f": "./models/finetuned/tv-choir/c2f.pth",
|
| 67 |
+
"codec": "./models/spotdl/codec.pth",
|
| 68 |
+
"full_ckpt": False
|
| 69 |
+
},
|
| 70 |
+
"titi": {
|
| 71 |
+
"coarse": "./models/finetuned/titi/coarse.pth",
|
| 72 |
+
"c2f": "./models/finetuned/titi/c2f.pth",
|
| 73 |
+
"codec": "./models/spotdl/codec.pth",
|
| 74 |
+
"full_ckpt": False
|
| 75 |
+
},
|
| 76 |
+
"titi-clean": {
|
| 77 |
+
"coarse": "./models/finetuned/titi-clean/coarse.pth",
|
| 78 |
+
"c2f": "./models/finetuned/titi-clean/c2f.pth",
|
| 79 |
+
"codec": "./models/spotdl/codec.pth",
|
| 80 |
+
"full_ckpt": False
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
interface.checkpoint_key = "spotdl"
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
OUT_DIR = Path("gradio-outputs")
|
| 87 |
+
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def load_audio(file):
|
| 91 |
+
print(file)
|
| 92 |
+
filepath = file.name
|
| 93 |
+
sig = at.AudioSignal.salient_excerpt(
|
| 94 |
+
filepath,
|
| 95 |
+
duration=interface.coarse.chunk_size_s
|
| 96 |
+
)
|
| 97 |
+
sig = interface.preprocess(sig)
|
| 98 |
+
|
| 99 |
+
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
|
| 100 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 101 |
+
sig.write(out_dir / "input.wav")
|
| 102 |
+
return sig.path_to_file
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def load_random_audio():
|
| 106 |
+
index = np.random.randint(0, len(dataset))
|
| 107 |
+
sig = dataset[index]["signal"]
|
| 108 |
+
sig = interface.preprocess(sig)
|
| 109 |
+
|
| 110 |
+
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
|
| 111 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 112 |
+
sig.write(out_dir / "input.wav")
|
| 113 |
+
return sig.path_to_file
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def _vamp(data, return_mask=False):
|
| 117 |
+
|
| 118 |
+
# if our checkpoint key is different, we need to load a new checkpoint
|
| 119 |
+
if data[checkpoint_key] != interface.checkpoint_key:
|
| 120 |
+
print(f"loading checkpoint {data[checkpoint_key]}")
|
| 121 |
+
interface.lora_load(
|
| 122 |
+
checkpoints[data[checkpoint_key]]["coarse"],
|
| 123 |
+
checkpoints[data[checkpoint_key]]["c2f"],
|
| 124 |
+
checkpoints[data[checkpoint_key]]["full_ckpt"],
|
| 125 |
+
)
|
| 126 |
+
interface.checkpoint_key = data[checkpoint_key]
|
| 127 |
+
|
| 128 |
+
out_dir = OUT_DIR / str(uuid.uuid4())
|
| 129 |
+
out_dir.mkdir()
|
| 130 |
+
sig = at.AudioSignal(data[input_audio])
|
| 131 |
+
#pitch shift input
|
| 132 |
+
sig = sig.shift_pitch(data[input_pitch_shift])
|
| 133 |
+
|
| 134 |
+
# TODO: random pitch shift of segments in the signal to prompt! window size should be a parameter, pitch shift width should be a parameter
|
| 135 |
+
|
| 136 |
+
z = interface.encode(sig)
|
| 137 |
+
|
| 138 |
+
ncc = data[n_conditioning_codebooks]
|
| 139 |
+
|
| 140 |
+
# build the mask
|
| 141 |
+
mask = pmask.linear_random(z, data[rand_mask_intensity])
|
| 142 |
+
mask = pmask.mask_and(
|
| 143 |
+
mask, pmask.inpaint(
|
| 144 |
+
z,
|
| 145 |
+
interface.s2t(data[prefix_s]),
|
| 146 |
+
interface.s2t(data[suffix_s])
|
| 147 |
+
)
|
| 148 |
+
)
|
| 149 |
+
mask = pmask.mask_and(
|
| 150 |
+
mask, pmask.periodic_mask(
|
| 151 |
+
z,
|
| 152 |
+
data[periodic_p],
|
| 153 |
+
data[periodic_w],
|
| 154 |
+
random_roll=True
|
| 155 |
+
)
|
| 156 |
+
)
|
| 157 |
+
if data[onset_mask_width] > 0:
|
| 158 |
+
mask = pmask.mask_or(
|
| 159 |
+
mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
|
| 160 |
+
)
|
| 161 |
+
# these should be the last two mask ops
|
| 162 |
+
mask = pmask.dropout(mask, data[dropout])
|
| 163 |
+
mask = pmask.codebook_unmask(mask, ncc)
|
| 164 |
+
|
| 165 |
+
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[init_temp]}, final temp {data[final_temp]}, use coarse2fine {data[use_coarse2fine]}")
|
| 166 |
+
# save the mask as a txt file
|
| 167 |
+
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
|
| 168 |
+
|
| 169 |
+
# if data[topk] is not None:
|
| 170 |
+
# top_k = data[topk] if data[topk] > 0 else None
|
| 171 |
+
# else:
|
| 172 |
+
# top_k = None
|
| 173 |
+
|
| 174 |
+
zv, mask_z = interface.coarse_vamp(
|
| 175 |
+
z,
|
| 176 |
+
mask=mask,
|
| 177 |
+
sampling_steps=data[num_steps],
|
| 178 |
+
temperature=(data[init_temp]*10, data[final_temp]*10),
|
| 179 |
+
return_mask=True,
|
| 180 |
+
# sample=data[sampling_strategy],
|
| 181 |
+
typical_filtering=data[typical_filtering],
|
| 182 |
+
typical_mass=data[typical_mass],
|
| 183 |
+
typical_min_tokens=data[typical_min_tokens],
|
| 184 |
+
# top_k=top_k,
|
| 185 |
+
gen_fn=interface.coarse.generate,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if use_coarse2fine:
|
| 189 |
+
zv = interface.coarse_to_fine(zv)
|
| 190 |
+
|
| 191 |
+
sig = interface.to_signal(zv).cpu()
|
| 192 |
+
print("done")
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
sig.write(out_dir / "output.wav")
|
| 197 |
+
|
| 198 |
+
if return_mask:
|
| 199 |
+
mask = interface.to_signal(mask_z).cpu()
|
| 200 |
+
mask.write(out_dir / "mask.wav")
|
| 201 |
+
return sig.path_to_file, mask.path_to_file
|
| 202 |
+
else:
|
| 203 |
+
return sig.path_to_file
|
| 204 |
+
|
| 205 |
+
def vamp(data):
|
| 206 |
+
return _vamp(data, return_mask=True)
|
| 207 |
+
|
| 208 |
+
def api_vamp(data):
|
| 209 |
+
return _vamp(data, return_mask=False)
|
| 210 |
+
|
| 211 |
+
def save_vamp(data):
|
| 212 |
+
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
|
| 213 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 214 |
+
|
| 215 |
+
sig_in = at.AudioSignal(data[input_audio])
|
| 216 |
+
sig_out = at.AudioSignal(data[output_audio])
|
| 217 |
+
|
| 218 |
+
sig_in.write(out_dir / "input.wav")
|
| 219 |
+
sig_out.write(out_dir / "output.wav")
|
| 220 |
+
|
| 221 |
+
_data = {
|
| 222 |
+
"init_temp": data[init_temp],
|
| 223 |
+
"final_temp": data[final_temp],
|
| 224 |
+
"prefix_s": data[prefix_s],
|
| 225 |
+
"suffix_s": data[suffix_s],
|
| 226 |
+
"rand_mask_intensity": data[rand_mask_intensity],
|
| 227 |
+
"num_steps": data[num_steps],
|
| 228 |
+
"notes": data[notes_text],
|
| 229 |
+
"periodic_period": data[periodic_p],
|
| 230 |
+
"periodic_width": data[periodic_w],
|
| 231 |
+
"n_conditioning_codebooks": data[n_conditioning_codebooks],
|
| 232 |
+
"use_coarse2fine": data[use_coarse2fine],
|
| 233 |
+
"stretch_factor": data[stretch_factor],
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
# save with yaml
|
| 237 |
+
with open(out_dir / "data.yaml", "w") as f:
|
| 238 |
+
yaml.dump(_data, f)
|
| 239 |
+
|
| 240 |
+
import zipfile
|
| 241 |
+
zip_path = out_dir.with_suffix(".zip")
|
| 242 |
+
with zipfile.ZipFile(zip_path, "w") as zf:
|
| 243 |
+
for file in out_dir.iterdir():
|
| 244 |
+
zf.write(file, file.name)
|
| 245 |
+
|
| 246 |
+
return f"saved! your save code is {out_dir.stem}", zip_path
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
with gr.Blocks() as demo:
|
| 251 |
+
|
| 252 |
+
with gr.Row():
|
| 253 |
+
with gr.Column():
|
| 254 |
+
use_coarse2fine = gr.Checkbox(
|
| 255 |
+
label="use coarse2fine",
|
| 256 |
+
value=True
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
manual_audio_upload = gr.File(
|
| 260 |
+
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
|
| 261 |
+
file_types=["audio"]
|
| 262 |
+
)
|
| 263 |
+
load_random_audio_button = gr.Button("or load random audio")
|
| 264 |
+
|
| 265 |
+
input_audio = gr.Audio(
|
| 266 |
+
label="input audio",
|
| 267 |
+
interactive=False,
|
| 268 |
+
type="filepath",
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
audio_mask = gr.Audio(
|
| 272 |
+
label="audio mask (listen to this to hear the mask hints)",
|
| 273 |
+
interactive=False,
|
| 274 |
+
type="filepath",
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# connect widgets
|
| 278 |
+
load_random_audio_button.click(
|
| 279 |
+
fn=load_random_audio,
|
| 280 |
+
inputs=[],
|
| 281 |
+
outputs=[ input_audio]
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
manual_audio_upload.change(
|
| 285 |
+
fn=load_audio,
|
| 286 |
+
inputs=[manual_audio_upload],
|
| 287 |
+
outputs=[ input_audio]
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# mask settings
|
| 291 |
+
with gr.Column():
|
| 292 |
+
|
| 293 |
+
input_pitch_shift = gr.Slider(
|
| 294 |
+
label="input pitch shift (semitones)",
|
| 295 |
+
minimum=-36,
|
| 296 |
+
maximum=36,
|
| 297 |
+
step=1,
|
| 298 |
+
value=0,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
rand_mask_intensity = gr.Slider(
|
| 302 |
+
label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
|
| 303 |
+
minimum=0.0,
|
| 304 |
+
maximum=1.0,
|
| 305 |
+
value=1.0
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
periodic_p = gr.Slider(
|
| 309 |
+
label="periodic prompt (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
|
| 310 |
+
minimum=0,
|
| 311 |
+
maximum=128,
|
| 312 |
+
step=1,
|
| 313 |
+
value=3,
|
| 314 |
+
)
|
| 315 |
+
periodic_w = gr.Slider(
|
| 316 |
+
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
|
| 317 |
+
minimum=1,
|
| 318 |
+
maximum=20,
|
| 319 |
+
step=1,
|
| 320 |
+
value=1,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
onset_mask_width = gr.Slider(
|
| 324 |
+
label="onset mask width (steps, 1 step ~= 10milliseconds)",
|
| 325 |
+
minimum=0,
|
| 326 |
+
maximum=20,
|
| 327 |
+
step=1,
|
| 328 |
+
value=5,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
with gr.Accordion("extras ", open=False):
|
| 332 |
+
n_conditioning_codebooks = gr.Number(
|
| 333 |
+
label="number of conditioning codebooks. probably 0",
|
| 334 |
+
value=0,
|
| 335 |
+
precision=0,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
stretch_factor = gr.Slider(
|
| 339 |
+
label="time stretch factor",
|
| 340 |
+
minimum=0,
|
| 341 |
+
maximum=64,
|
| 342 |
+
step=1,
|
| 343 |
+
value=1,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
with gr.Accordion("prefix/suffix hints", open=False):
|
| 348 |
+
prefix_s = gr.Slider(
|
| 349 |
+
label="prefix hint length (seconds)",
|
| 350 |
+
minimum=0.0,
|
| 351 |
+
maximum=10.0,
|
| 352 |
+
value=0.0
|
| 353 |
+
)
|
| 354 |
+
suffix_s = gr.Slider(
|
| 355 |
+
label="suffix hint length (seconds)",
|
| 356 |
+
minimum=0.0,
|
| 357 |
+
maximum=10.0,
|
| 358 |
+
value=0.0
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
with gr.Accordion("temperature settings", open=False):
|
| 362 |
+
init_temp = gr.Slider(
|
| 363 |
+
label="initial temperature (should probably stay between 0.6 and 1)",
|
| 364 |
+
minimum=0.0,
|
| 365 |
+
maximum=1.5,
|
| 366 |
+
value=0.8
|
| 367 |
+
)
|
| 368 |
+
final_temp = gr.Slider(
|
| 369 |
+
label="final temperature (should probably stay between 0.7 and 2)",
|
| 370 |
+
minimum=0.0,
|
| 371 |
+
maximum=2.0,
|
| 372 |
+
value=0.8
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
with gr.Accordion("sampling settings", open=False):
|
| 376 |
+
sampling_strategy = gr.Radio(
|
| 377 |
+
label="sampling strategy",
|
| 378 |
+
choices=["gumbel", "multinomial"],
|
| 379 |
+
value="gumbel"
|
| 380 |
+
)
|
| 381 |
+
typical_filtering = gr.Checkbox(
|
| 382 |
+
label="typical filtering (cannot be used with topk)",
|
| 383 |
+
value=False
|
| 384 |
+
)
|
| 385 |
+
typical_mass = gr.Slider(
|
| 386 |
+
label="typical mass (should probably stay between 0.1 and 0.5)",
|
| 387 |
+
minimum=0.01,
|
| 388 |
+
maximum=0.99,
|
| 389 |
+
value=0.2
|
| 390 |
+
)
|
| 391 |
+
typical_min_tokens = gr.Slider(
|
| 392 |
+
label="typical min tokens (should probably stay between 1 and 256)",
|
| 393 |
+
minimum=1,
|
| 394 |
+
maximum=256,
|
| 395 |
+
step=1,
|
| 396 |
+
value=1
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
num_steps = gr.Slider(
|
| 403 |
+
label="number of steps (should normally be between 12 and 36)",
|
| 404 |
+
minimum=1,
|
| 405 |
+
maximum=128,
|
| 406 |
+
step=1,
|
| 407 |
+
value=36
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
dropout = gr.Slider(
|
| 411 |
+
label="mask dropout",
|
| 412 |
+
minimum=0.0,
|
| 413 |
+
maximum=1.0,
|
| 414 |
+
step=0.01,
|
| 415 |
+
value=0.0
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
# mask settings
|
| 420 |
+
with gr.Column():
|
| 421 |
+
checkpoint_key = gr.Radio(
|
| 422 |
+
label="checkpoint",
|
| 423 |
+
choices=list(checkpoints.keys()),
|
| 424 |
+
value="spotdl"
|
| 425 |
+
)
|
| 426 |
+
vamp_button = gr.Button("vamp!!!")
|
| 427 |
+
output_audio = gr.Audio(
|
| 428 |
+
label="output audio",
|
| 429 |
+
interactive=False,
|
| 430 |
+
type="filepath"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
# with gr.Column():
|
| 436 |
+
# with gr.Accordion(label="beat unmask (how much time around the beat should be hinted?)"):
|
| 437 |
+
# use_beats = gr.Checkbox(
|
| 438 |
+
# label="use beat hints (helps the output stick to the beat structure of the input)",
|
| 439 |
+
# value=False
|
| 440 |
+
# )
|
| 441 |
+
|
| 442 |
+
# snap_to_beats = gr.Checkbox(
|
| 443 |
+
# label="trim to beat markers (uncheck if the output audio is too short.)",
|
| 444 |
+
# value=True
|
| 445 |
+
# )
|
| 446 |
+
|
| 447 |
+
# beat_unmask_dur = gr.Slider(
|
| 448 |
+
# label="duration",
|
| 449 |
+
# minimum=0.0,
|
| 450 |
+
# maximum=3.0,
|
| 451 |
+
# value=0.07
|
| 452 |
+
# )
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
notes_text = gr.Textbox(
|
| 456 |
+
label="type any notes about the generated audio here",
|
| 457 |
+
value="",
|
| 458 |
+
interactive=True
|
| 459 |
+
)
|
| 460 |
+
save_button = gr.Button("save vamp")
|
| 461 |
+
download_file = gr.File(
|
| 462 |
+
label="vamp to download will appear here",
|
| 463 |
+
interactive=False
|
| 464 |
+
)
|
| 465 |
+
use_as_input_button = gr.Button("use output as input")
|
| 466 |
+
|
| 467 |
+
thank_you = gr.Markdown("")
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
_inputs = {
|
| 471 |
+
input_audio,
|
| 472 |
+
num_steps,
|
| 473 |
+
init_temp, final_temp,
|
| 474 |
+
prefix_s, suffix_s,
|
| 475 |
+
rand_mask_intensity,
|
| 476 |
+
periodic_p, periodic_w,
|
| 477 |
+
n_conditioning_codebooks,
|
| 478 |
+
dropout,
|
| 479 |
+
use_coarse2fine,
|
| 480 |
+
stretch_factor,
|
| 481 |
+
onset_mask_width,
|
| 482 |
+
input_pitch_shift,
|
| 483 |
+
sampling_strategy,
|
| 484 |
+
typical_filtering,
|
| 485 |
+
typical_mass,
|
| 486 |
+
typical_min_tokens,
|
| 487 |
+
# topk,
|
| 488 |
+
checkpoint_key
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
# connect widgets
|
| 492 |
+
vamp_button.click(
|
| 493 |
+
fn=vamp,
|
| 494 |
+
inputs=_inputs,
|
| 495 |
+
outputs=[output_audio, audio_mask],
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
api_vamp_button = gr.Button("api vamp")
|
| 499 |
+
api_vamp_button.click(
|
| 500 |
+
fn=api_vamp,
|
| 501 |
+
inputs=_inputs,
|
| 502 |
+
outputs=[output_audio],
|
| 503 |
+
api_name="vamp"
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
use_as_input_button.click(
|
| 507 |
+
fn=lambda x: x,
|
| 508 |
+
inputs=[output_audio],
|
| 509 |
+
outputs=[input_audio]
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
save_button.click(
|
| 513 |
+
fn=save_vamp,
|
| 514 |
+
inputs=_inputs | {notes_text, output_audio},
|
| 515 |
+
outputs=[thank_you, download_file]
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
demo.launch(share=True, enable_queue=False, debug=True, server_name="0.0.0.0")
|
demo.py
CHANGED
|
@@ -32,6 +32,47 @@ dataset = at.data.datasets.AudioDataset(
|
|
| 32 |
)
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
OUT_DIR = Path("gradio-outputs")
|
| 36 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
| 37 |
|
|
@@ -63,6 +104,19 @@ def load_random_audio():
|
|
| 63 |
|
| 64 |
|
| 65 |
def _vamp(data, return_mask=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
| 67 |
out_dir.mkdir()
|
| 68 |
sig = at.AudioSignal(data[input_audio])
|
|
@@ -229,8 +283,8 @@ with gr.Blocks() as demo:
|
|
| 229 |
|
| 230 |
input_pitch_shift = gr.Slider(
|
| 231 |
label="input pitch shift (semitones)",
|
| 232 |
-
minimum=-
|
| 233 |
-
maximum=
|
| 234 |
step=1,
|
| 235 |
value=0,
|
| 236 |
)
|
|
@@ -247,7 +301,7 @@ with gr.Blocks() as demo:
|
|
| 247 |
minimum=0,
|
| 248 |
maximum=128,
|
| 249 |
step=1,
|
| 250 |
-
value=
|
| 251 |
)
|
| 252 |
periodic_w = gr.Slider(
|
| 253 |
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
|
|
@@ -262,7 +316,7 @@ with gr.Blocks() as demo:
|
|
| 262 |
minimum=0,
|
| 263 |
maximum=20,
|
| 264 |
step=1,
|
| 265 |
-
value=
|
| 266 |
)
|
| 267 |
|
| 268 |
with gr.Accordion("extras ", open=False):
|
|
@@ -361,6 +415,11 @@ with gr.Blocks() as demo:
|
|
| 361 |
|
| 362 |
# mask settings
|
| 363 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
vamp_button = gr.Button("vamp!!!")
|
| 365 |
output_audio = gr.Audio(
|
| 366 |
label="output audio",
|
|
@@ -423,6 +482,7 @@ with gr.Blocks() as demo:
|
|
| 423 |
typical_mass,
|
| 424 |
typical_min_tokens,
|
| 425 |
topk,
|
|
|
|
| 426 |
}
|
| 427 |
|
| 428 |
# connect widgets
|
|
@@ -452,4 +512,4 @@ with gr.Blocks() as demo:
|
|
| 452 |
outputs=[thank_you, download_file]
|
| 453 |
)
|
| 454 |
|
| 455 |
-
demo.launch(share=True, enable_queue=False, debug=True)
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
|
| 35 |
+
checkpoints = {
|
| 36 |
+
"spotdl": {
|
| 37 |
+
"coarse": "./models/spotdl/coarse.pth",
|
| 38 |
+
"c2f": "./models/spotdl/c2f.pth",
|
| 39 |
+
"codec": "./models/spotdl/codec.pth",
|
| 40 |
+
"full_ckpt": True
|
| 41 |
+
},
|
| 42 |
+
"berta": {
|
| 43 |
+
"coarse": "./models/finetuned/berta-goldman-speech/coarse.pth",
|
| 44 |
+
"c2f": "./models/finetuned/berta-goldman-speech/c2f.pth",
|
| 45 |
+
"codec": "./model/spotdl/codec.pth",
|
| 46 |
+
"full_ckpt": True
|
| 47 |
+
},
|
| 48 |
+
"xeno-canto-2": {
|
| 49 |
+
"coarse": "./models/finetuned/xeno-canto-2/coarse.pth",
|
| 50 |
+
"c2f": "./models/finetuned/xeno-canto-2/c2f.pth",
|
| 51 |
+
"codec": "./models/spotdl/codec.pth",
|
| 52 |
+
"full_ckpt": True
|
| 53 |
+
},
|
| 54 |
+
"panchos": {
|
| 55 |
+
"coarse": "./models/finetuned/panchos/coarse.pth",
|
| 56 |
+
"c2f": "./models/finetuned/panchos/c2f.pth",
|
| 57 |
+
"codec": "./models/spotdl/codec.pth",
|
| 58 |
+
"full_ckpt": False
|
| 59 |
+
},
|
| 60 |
+
"tv-choir": {
|
| 61 |
+
"coarse": "./models/finetuned/tv-choir/coarse.pth",
|
| 62 |
+
"c2f": "./models/finetuned/tv-choir/c2f.pth",
|
| 63 |
+
"codec": "./models/spotdl/codec.pth",
|
| 64 |
+
"full_ckpt": False
|
| 65 |
+
},
|
| 66 |
+
"titi": {
|
| 67 |
+
"coarse": "./models/finetuned/titi/coarse.pth",
|
| 68 |
+
"c2f": "./models/finetuned/titi/c2f.pth",
|
| 69 |
+
"codec": "./models/spotdl/codec.pth",
|
| 70 |
+
"full_ckpt": False
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
interface.checkpoint_key = "spotdl"
|
| 74 |
+
|
| 75 |
+
|
| 76 |
OUT_DIR = Path("gradio-outputs")
|
| 77 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
| 78 |
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
def _vamp(data, return_mask=False):
|
| 107 |
+
|
| 108 |
+
# if our checkpoint key is different, we need to load a new checkpoint
|
| 109 |
+
if data[checkpoint_key] != interface.checkpoint_key:
|
| 110 |
+
print(f"loading checkpoint {data[checkpoint_key]}")
|
| 111 |
+
interface.lora_load(
|
| 112 |
+
checkpoints[data[checkpoint_key]]["coarse"],
|
| 113 |
+
checkpoints[data[checkpoint_key]]["c2f"],
|
| 114 |
+
checkpoints[data[checkpoint_key]]["full_ckpt"],
|
| 115 |
+
reset=(data[checkpoint_key] == "spotdl")
|
| 116 |
+
)
|
| 117 |
+
interface.checkpoint_key = data[checkpoint_key]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
| 121 |
out_dir.mkdir()
|
| 122 |
sig = at.AudioSignal(data[input_audio])
|
|
|
|
| 283 |
|
| 284 |
input_pitch_shift = gr.Slider(
|
| 285 |
label="input pitch shift (semitones)",
|
| 286 |
+
minimum=-36,
|
| 287 |
+
maximum=36,
|
| 288 |
step=1,
|
| 289 |
value=0,
|
| 290 |
)
|
|
|
|
| 301 |
minimum=0,
|
| 302 |
maximum=128,
|
| 303 |
step=1,
|
| 304 |
+
value=3,
|
| 305 |
)
|
| 306 |
periodic_w = gr.Slider(
|
| 307 |
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
|
|
|
|
| 316 |
minimum=0,
|
| 317 |
maximum=20,
|
| 318 |
step=1,
|
| 319 |
+
value=5,
|
| 320 |
)
|
| 321 |
|
| 322 |
with gr.Accordion("extras ", open=False):
|
|
|
|
| 415 |
|
| 416 |
# mask settings
|
| 417 |
with gr.Column():
|
| 418 |
+
checkpoint_key = gr.Radio(
|
| 419 |
+
label="checkpoint",
|
| 420 |
+
choices=list(checkpoints.keys()),
|
| 421 |
+
value="spotdl"
|
| 422 |
+
)
|
| 423 |
vamp_button = gr.Button("vamp!!!")
|
| 424 |
output_audio = gr.Audio(
|
| 425 |
label="output audio",
|
|
|
|
| 482 |
typical_mass,
|
| 483 |
typical_min_tokens,
|
| 484 |
topk,
|
| 485 |
+
checkpoint_key
|
| 486 |
}
|
| 487 |
|
| 488 |
# connect widgets
|
|
|
|
| 512 |
outputs=[thank_you, download_file]
|
| 513 |
)
|
| 514 |
|
| 515 |
+
demo.launch(share=True, enable_queue=False, debug=True, server_name="0.0.0.0")
|
scripts/exp/train.py
CHANGED
|
@@ -353,12 +353,9 @@ def train(
|
|
| 353 |
mask[:, vn.n_conditioning_codebooks :, :],
|
| 354 |
)
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
output["loss"] = criterion(z_hat, t_masked)
|
| 360 |
-
else:
|
| 361 |
-
output["loss"] = criterion(z_hat, target)
|
| 362 |
|
| 363 |
self._metrics(
|
| 364 |
vn=vn,
|
|
@@ -429,12 +426,9 @@ def train(
|
|
| 429 |
)
|
| 430 |
|
| 431 |
output = {}
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
output["loss"] = criterion(z_hat, t_masked)
|
| 436 |
-
else:
|
| 437 |
-
output["loss"] = criterion(z_hat, target)
|
| 438 |
|
| 439 |
self._metrics(
|
| 440 |
vn=vn,
|
|
|
|
| 353 |
mask[:, vn.n_conditioning_codebooks :, :],
|
| 354 |
)
|
| 355 |
|
| 356 |
+
# replace target with ignore index for masked tokens
|
| 357 |
+
t_masked = target.masked_fill(~flat_mask.bool(), IGNORE_INDEX)
|
| 358 |
+
output["loss"] = criterion(z_hat, t_masked)
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
self._metrics(
|
| 361 |
vn=vn,
|
|
|
|
| 426 |
)
|
| 427 |
|
| 428 |
output = {}
|
| 429 |
+
# replace target with ignore index for masked tokens
|
| 430 |
+
t_masked = target.masked_fill(~flat_mask.bool(), IGNORE_INDEX)
|
| 431 |
+
output["loss"] = criterion(z_hat, t_masked)
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
self._metrics(
|
| 434 |
vn=vn,
|
scripts/utils/augment.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
import audiotools as at
|
| 4 |
+
from audiotools import AudioSignal
|
| 5 |
+
|
| 6 |
+
import argbind
|
| 7 |
+
import tqdm
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from pedalboard import (
|
| 11 |
+
Compressor, Gain, Chorus, LadderFilter, Phaser, Convolution, Reverb, Pedalboard
|
| 12 |
+
)
|
| 13 |
+
from pedalboard.io import AudioFile
|
| 14 |
+
|
| 15 |
+
# Read in a whole file, resampling to our desired sample rate:
|
| 16 |
+
samplerate = 44100.0
|
| 17 |
+
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
|
| 18 |
+
audio = f.read(f.frames)
|
| 19 |
+
|
| 20 |
+
# Make a pretty interesting sounding guitar pedalboard:
|
| 21 |
+
board = Pedalboard([
|
| 22 |
+
Compressor(threshold_db=-50, ratio=25),
|
| 23 |
+
Gain(gain_db=30),
|
| 24 |
+
Chorus(),
|
| 25 |
+
LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
|
| 26 |
+
Phaser(),
|
| 27 |
+
Convolution("./guitar_amp.wav", 1.0),
|
| 28 |
+
Reverb(room_size=0.25),
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@argbind.bind(without_prefix=True)
|
| 33 |
+
def augment(
|
| 34 |
+
audio_folder: Path,
|
| 35 |
+
dest_folder: Path,
|
| 36 |
+
n_augmentations: int = 10,
|
| 37 |
+
):
|
| 38 |
+
"""
|
| 39 |
+
Augment a folder of audio files by applying audiotools and pedalboard transforms.
|
| 40 |
+
|
| 41 |
+
The dest foler will contain a folder for each of the clean dataset's files.
|
| 42 |
+
Under each of these folders, there will be a clean file and many augmented files.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
audio_files = at.util.find_audio(audio_folder)
|
| 46 |
+
|
| 47 |
+
for audio_file in tqdm.tqdm(audio_files):
|
| 48 |
+
subtree = dest_folder / audio_file.relative_to(audio_folder).parent
|
| 49 |
+
subdir = subtree / audio_file.stem
|
| 50 |
+
subdir.mkdir(parents=True, exist_ok=True)
|
| 51 |
+
|
| 52 |
+
# apply pedalboard transforms
|
| 53 |
+
for i in range(n_augmentations):
|
vampnet/interface.py
CHANGED
|
@@ -97,17 +97,36 @@ class Interface(torch.nn.Module):
|
|
| 97 |
|
| 98 |
def lora_load(
|
| 99 |
self,
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 102 |
):
|
| 103 |
-
if
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
def s2t(self, seconds: float):
|
|
@@ -290,6 +309,7 @@ class Interface(torch.nn.Module):
|
|
| 290 |
z,
|
| 291 |
mask,
|
| 292 |
return_mask=False,
|
|
|
|
| 293 |
**kwargs
|
| 294 |
):
|
| 295 |
# coarse z
|
|
@@ -301,7 +321,8 @@ class Interface(torch.nn.Module):
|
|
| 301 |
cz_masked, mask = apply_mask(cz, mask, self.coarse.mask_token)
|
| 302 |
cz_masked = cz_masked[:, : self.coarse.n_codebooks, :]
|
| 303 |
|
| 304 |
-
|
|
|
|
| 305 |
codec=self.codec,
|
| 306 |
time_steps=cz.shape[-1],
|
| 307 |
start_tokens=cz,
|
|
@@ -310,8 +331,6 @@ class Interface(torch.nn.Module):
|
|
| 310 |
**kwargs
|
| 311 |
)
|
| 312 |
|
| 313 |
-
# replace the mask token in cz_masked with random tokens
|
| 314 |
-
# so that we can decode it
|
| 315 |
if return_mask:
|
| 316 |
return c_vamp, cz_masked
|
| 317 |
|
|
@@ -320,53 +339,48 @@ class Interface(torch.nn.Module):
|
|
| 320 |
|
| 321 |
if __name__ == "__main__":
|
| 322 |
import audiotools as at
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
interface = Interface(
|
| 325 |
coarse_ckpt="./models/spotdl/coarse.pth",
|
| 326 |
coarse2fine_ckpt="./models/spotdl/c2f.pth",
|
| 327 |
codec_ckpt="./models/spotdl/codec.pth",
|
| 328 |
-
device="
|
| 329 |
)
|
| 330 |
|
| 331 |
-
sig = at.AudioSignal('
|
| 332 |
|
| 333 |
z = interface.encode(sig)
|
| 334 |
|
| 335 |
-
mask = linear_random(z, 0
|
| 336 |
-
print(mask)
|
| 337 |
-
mask = mask_and(
|
| 338 |
-
mask, inpaint(
|
| 339 |
-
z,
|
| 340 |
-
interface.s2t(3),
|
| 341 |
-
interface.s2t(3)
|
| 342 |
-
)
|
| 343 |
-
)
|
| 344 |
-
print(mask)
|
| 345 |
mask = mask_and(
|
| 346 |
mask, periodic_mask(
|
| 347 |
z,
|
| 348 |
-
|
| 349 |
1,
|
| 350 |
random_roll=True
|
| 351 |
)
|
| 352 |
)
|
| 353 |
-
mask = dropout(mask, 0.0)
|
| 354 |
-
mask = codebook_unmask(mask, 0)
|
| 355 |
|
| 356 |
|
| 357 |
zv, mask_z = interface.coarse_vamp(
|
| 358 |
z,
|
| 359 |
mask=mask,
|
| 360 |
-
sampling_steps=
|
| 361 |
-
temperature=
|
| 362 |
-
return_mask=True
|
|
|
|
| 363 |
)
|
| 364 |
|
| 365 |
use_coarse2fine = False
|
| 366 |
if use_coarse2fine:
|
| 367 |
zv = interface.coarse_to_fine(zv)
|
| 368 |
|
| 369 |
-
print(mask_z)
|
| 370 |
mask = interface.to_signal(mask_z).cpu()
|
| 371 |
|
| 372 |
sig = interface.to_signal(zv).cpu()
|
|
|
|
| 97 |
|
| 98 |
def lora_load(
|
| 99 |
self,
|
| 100 |
+
coarse_ckpt: str = None,
|
| 101 |
+
c2f_ckpt: str = None,
|
| 102 |
+
full_ckpts: bool = False,
|
| 103 |
):
|
| 104 |
+
if full_ckpts:
|
| 105 |
+
if coarse_ckpt is not None:
|
| 106 |
+
self.coarse = _load_model(
|
| 107 |
+
ckpt=coarse_ckpt,
|
| 108 |
+
device=self.device,
|
| 109 |
+
chunk_size_s=self.coarse.chunk_size_s,
|
| 110 |
+
)
|
| 111 |
+
if c2f_ckpt is not None:
|
| 112 |
+
self.c2f = _load_model(
|
| 113 |
+
ckpt=c2f_ckpt,
|
| 114 |
+
device=self.device,
|
| 115 |
+
chunk_size_s=self.c2f.chunk_size_s,
|
| 116 |
+
)
|
| 117 |
+
else:
|
| 118 |
+
if coarse_ckpt is not None:
|
| 119 |
+
self.coarse.to("cpu")
|
| 120 |
+
state_dict = torch.load(coarse_ckpt, map_location="cpu")
|
| 121 |
+
|
| 122 |
+
self.coarse.load_state_dict(state_dict, strict=False)
|
| 123 |
+
self.coarse.to(self.device)
|
| 124 |
+
if c2f_ckpt is not None:
|
| 125 |
+
self.c2f.to("cpu")
|
| 126 |
+
state_dict = torch.load(c2f_ckpt, map_location="cpu")
|
| 127 |
+
|
| 128 |
+
self.c2f.load_state_dict(state_dict, strict=False)
|
| 129 |
+
self.c2f.to(self.device)
|
| 130 |
|
| 131 |
|
| 132 |
def s2t(self, seconds: float):
|
|
|
|
| 309 |
z,
|
| 310 |
mask,
|
| 311 |
return_mask=False,
|
| 312 |
+
gen_fn=None,
|
| 313 |
**kwargs
|
| 314 |
):
|
| 315 |
# coarse z
|
|
|
|
| 321 |
cz_masked, mask = apply_mask(cz, mask, self.coarse.mask_token)
|
| 322 |
cz_masked = cz_masked[:, : self.coarse.n_codebooks, :]
|
| 323 |
|
| 324 |
+
gen_fn = gen_fn or self.coarse.sample
|
| 325 |
+
c_vamp = gen_fn(
|
| 326 |
codec=self.codec,
|
| 327 |
time_steps=cz.shape[-1],
|
| 328 |
start_tokens=cz,
|
|
|
|
| 331 |
**kwargs
|
| 332 |
)
|
| 333 |
|
|
|
|
|
|
|
| 334 |
if return_mask:
|
| 335 |
return c_vamp, cz_masked
|
| 336 |
|
|
|
|
| 339 |
|
| 340 |
if __name__ == "__main__":
|
| 341 |
import audiotools as at
|
| 342 |
+
import logging
|
| 343 |
+
logger = logging.getLogger()
|
| 344 |
+
logger.setLevel(logging.INFO)
|
| 345 |
+
torch.set_printoptions(threshold=10000)
|
| 346 |
|
| 347 |
interface = Interface(
|
| 348 |
coarse_ckpt="./models/spotdl/coarse.pth",
|
| 349 |
coarse2fine_ckpt="./models/spotdl/c2f.pth",
|
| 350 |
codec_ckpt="./models/spotdl/codec.pth",
|
| 351 |
+
device="cuda"
|
| 352 |
)
|
| 353 |
|
| 354 |
+
sig = at.AudioSignal('introspection ii-1.mp3', duration=10)
|
| 355 |
|
| 356 |
z = interface.encode(sig)
|
| 357 |
|
| 358 |
+
mask = linear_random(z, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
mask = mask_and(
|
| 360 |
mask, periodic_mask(
|
| 361 |
z,
|
| 362 |
+
32,
|
| 363 |
1,
|
| 364 |
random_roll=True
|
| 365 |
)
|
| 366 |
)
|
| 367 |
+
# mask = dropout(mask, 0.0)
|
| 368 |
+
# mask = codebook_unmask(mask, 0)
|
| 369 |
|
| 370 |
|
| 371 |
zv, mask_z = interface.coarse_vamp(
|
| 372 |
z,
|
| 373 |
mask=mask,
|
| 374 |
+
sampling_steps=36,
|
| 375 |
+
temperature=6.0,
|
| 376 |
+
return_mask=True,
|
| 377 |
+
# gen_fn=interface.coarse.generate
|
| 378 |
)
|
| 379 |
|
| 380 |
use_coarse2fine = False
|
| 381 |
if use_coarse2fine:
|
| 382 |
zv = interface.coarse_to_fine(zv)
|
| 383 |
|
|
|
|
| 384 |
mask = interface.to_signal(mask_z).cpu()
|
| 385 |
|
| 386 |
sig = interface.to_signal(zv).cpu()
|
vampnet/mask.py
CHANGED
|
@@ -6,7 +6,7 @@ from audiotools import AudioSignal
|
|
| 6 |
from .util import scalar_to_batch_tensor
|
| 7 |
|
| 8 |
def _gamma(r):
|
| 9 |
-
return (r * torch.pi / 2).cos()
|
| 10 |
|
| 11 |
def _invgamma(y):
|
| 12 |
if not torch.is_tensor(y):
|
|
|
|
| 6 |
from .util import scalar_to_batch_tensor
|
| 7 |
|
| 8 |
def _gamma(r):
|
| 9 |
+
return (r * torch.pi / 2).cos().clamp(1e-10, 1.0)
|
| 10 |
|
| 11 |
def _invgamma(y):
|
| 12 |
if not torch.is_tensor(y):
|
vampnet/modules/transformer.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import math
|
|
|
|
| 2 |
from typing import Optional, Tuple, Union
|
| 3 |
|
| 4 |
import numpy as np
|
|
@@ -19,17 +20,17 @@ from ..mask import _gamma
|
|
| 19 |
|
| 20 |
LORA_R = 8
|
| 21 |
|
| 22 |
-
def log(t, eps=1e-20):
|
| 23 |
-
|
| 24 |
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
noise = torch.zeros_like(t).uniform_(
|
| 28 |
-
return -log(-log(noise))
|
| 29 |
|
| 30 |
|
| 31 |
def gumbel_sample(t, temperature=1.0, dim=-1):
|
| 32 |
-
return ((t / max(temperature, 1e-10)) +
|
| 33 |
|
| 34 |
|
| 35 |
class RMSNorm(nn.Module):
|
|
@@ -477,23 +478,16 @@ class VampNet(at.ml.BaseModel):
|
|
| 477 |
self.flash_attn = flash_attn
|
| 478 |
self.noise_mode = noise_mode
|
| 479 |
|
| 480 |
-
|
| 481 |
-
special_tokens = ["MASK"]
|
| 482 |
-
elif noise_mode == "random":
|
| 483 |
-
special_tokens = None
|
| 484 |
-
else:
|
| 485 |
-
raise ValueError(f"Unknown noise mode: {noise_mode}")
|
| 486 |
|
| 487 |
self.embedding = CodebookEmbedding(
|
| 488 |
latent_dim=latent_dim,
|
| 489 |
n_codebooks=n_codebooks,
|
| 490 |
vocab_size=vocab_size,
|
| 491 |
emb_dim=embedding_dim,
|
| 492 |
-
special_tokens=
|
| 493 |
)
|
| 494 |
-
|
| 495 |
-
if noise_mode == "mask":
|
| 496 |
-
self.mask_token = self.embedding.special_idxs["MASK"]
|
| 497 |
|
| 498 |
self.transformer = TransformerStack(
|
| 499 |
d_model=embedding_dim,
|
|
@@ -584,23 +578,20 @@ class VampNet(at.ml.BaseModel):
|
|
| 584 |
z_hat,
|
| 585 |
mask,
|
| 586 |
):
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
z_hat
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
)
|
| 598 |
|
| 599 |
-
|
| 600 |
|
| 601 |
-
|
| 602 |
-
else:
|
| 603 |
-
raise ValueError(f"invalid noise mode for adding truth to logits {self.noise_mode}")
|
| 604 |
|
| 605 |
return z_hat
|
| 606 |
|
|
@@ -742,6 +733,272 @@ class VampNet(at.ml.BaseModel):
|
|
| 742 |
else:
|
| 743 |
return z
|
| 744 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 745 |
def sample_from_logits(
|
| 746 |
logits,
|
| 747 |
top_k: int = None,
|
|
@@ -798,7 +1055,6 @@ def sample_from_logits(
|
|
| 798 |
return inferred
|
| 799 |
|
| 800 |
|
| 801 |
-
|
| 802 |
if __name__ == "__main__":
|
| 803 |
# import argbind
|
| 804 |
from .layers import num_params
|
|
|
|
| 1 |
import math
|
| 2 |
+
import logging
|
| 3 |
from typing import Optional, Tuple, Union
|
| 4 |
|
| 5 |
import numpy as np
|
|
|
|
| 20 |
|
| 21 |
LORA_R = 8
|
| 22 |
|
| 23 |
+
# def log(t, eps=1e-20):
|
| 24 |
+
# return torch.log(t + eps)
|
| 25 |
|
| 26 |
|
| 27 |
+
def gumbel_noise_like(t):
|
| 28 |
+
noise = torch.zeros_like(t).uniform_(1e-20, 1)
|
| 29 |
+
return -torch.log(-torch.log(noise))
|
| 30 |
|
| 31 |
|
| 32 |
def gumbel_sample(t, temperature=1.0, dim=-1):
|
| 33 |
+
return ((t / max(temperature, 1e-10)) + gumbel_noise_like(t)).argmax(dim=dim)
|
| 34 |
|
| 35 |
|
| 36 |
class RMSNorm(nn.Module):
|
|
|
|
| 478 |
self.flash_attn = flash_attn
|
| 479 |
self.noise_mode = noise_mode
|
| 480 |
|
| 481 |
+
assert self.noise_mode == "mask", "deprecated"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
self.embedding = CodebookEmbedding(
|
| 484 |
latent_dim=latent_dim,
|
| 485 |
n_codebooks=n_codebooks,
|
| 486 |
vocab_size=vocab_size,
|
| 487 |
emb_dim=embedding_dim,
|
| 488 |
+
special_tokens=["MASK"],
|
| 489 |
)
|
| 490 |
+
self.mask_token = self.embedding.special_idxs["MASK"]
|
|
|
|
|
|
|
| 491 |
|
| 492 |
self.transformer = TransformerStack(
|
| 493 |
d_model=embedding_dim,
|
|
|
|
| 578 |
z_hat,
|
| 579 |
mask,
|
| 580 |
):
|
| 581 |
+
z_true = z_true[:, self.n_conditioning_codebooks :, :]
|
| 582 |
+
mask = mask[:, self.n_conditioning_codebooks :, :]
|
| 583 |
+
|
| 584 |
+
truth = F.one_hot(z_true, self.vocab_size)
|
| 585 |
+
mask = mask[:, :, :, None].expand(-1, -1, -1, self.vocab_size)
|
| 586 |
+
z_hat = rearrange(
|
| 587 |
+
z_hat,
|
| 588 |
+
"b p (t c) -> b c t p",
|
| 589 |
+
c=self.n_codebooks - self.n_conditioning_codebooks,
|
| 590 |
+
)
|
|
|
|
| 591 |
|
| 592 |
+
z_hat = z_hat * mask + truth * (1 - mask)
|
| 593 |
|
| 594 |
+
z_hat = rearrange(z_hat, "b c t p -> b p (t c)")
|
|
|
|
|
|
|
| 595 |
|
| 596 |
return z_hat
|
| 597 |
|
|
|
|
| 733 |
else:
|
| 734 |
return z
|
| 735 |
|
| 736 |
+
@torch.no_grad()
|
| 737 |
+
def generate(
|
| 738 |
+
self,
|
| 739 |
+
codec,
|
| 740 |
+
time_steps: int = 300,
|
| 741 |
+
sampling_steps: int = 36,
|
| 742 |
+
start_tokens: Optional[torch.Tensor] = None,
|
| 743 |
+
mask: Optional[torch.Tensor] = None,
|
| 744 |
+
temperature: Union[float, Tuple[float, float]] = 0.8,
|
| 745 |
+
typical_filtering=False,
|
| 746 |
+
typical_mass=0.2,
|
| 747 |
+
typical_min_tokens=1,
|
| 748 |
+
return_signal=True,
|
| 749 |
+
):
|
| 750 |
+
logging.info(f"beginning generation with {sampling_steps} steps")
|
| 751 |
+
|
| 752 |
+
#####################
|
| 753 |
+
# resolve temperature #
|
| 754 |
+
#####################
|
| 755 |
+
if isinstance(temperature, float):
|
| 756 |
+
temperature = torch.tensor(temperature).repeat(sampling_steps)
|
| 757 |
+
elif isinstance(temperature, tuple):
|
| 758 |
+
assert len(temperature) == 2
|
| 759 |
+
l, h = temperature
|
| 760 |
+
temperature = torch.linspace(l, h, sampling_steps)
|
| 761 |
+
else:
|
| 762 |
+
raise TypeError(f"invalid type for temperature")
|
| 763 |
+
|
| 764 |
+
logging.info(f"temperature: {temperature}")
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
#####################
|
| 768 |
+
# resolve initial z #
|
| 769 |
+
#####################
|
| 770 |
+
z = start_tokens
|
| 771 |
+
|
| 772 |
+
if z is None:
|
| 773 |
+
z = torch.full((1, self.n_codebooks, time_steps), self.mask_token).to(
|
| 774 |
+
self.device
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
logging.info(f"created z with shape {z.shape}")
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
#################
|
| 781 |
+
# resolve mask #
|
| 782 |
+
#################
|
| 783 |
+
|
| 784 |
+
if mask is None:
|
| 785 |
+
mask = torch.ones_like(z).to(self.device).int()
|
| 786 |
+
mask[:, : self.n_conditioning_codebooks, :] = 0.0
|
| 787 |
+
if mask.ndim == 2:
|
| 788 |
+
mask = mask[:, None, :].repeat(1, z.shape[1], 1)
|
| 789 |
+
# init_mask = mask.clone()
|
| 790 |
+
|
| 791 |
+
logging.info(f"created mask with shape {mask.shape}")
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
###########
|
| 795 |
+
# set up #
|
| 796 |
+
##########
|
| 797 |
+
# apply the mask to z
|
| 798 |
+
z_masked = z.masked_fill(mask.bool(), self.mask_token)
|
| 799 |
+
# logging.info(f"z_masked: {z_masked}")
|
| 800 |
+
|
| 801 |
+
# how many mask tokens to begin with?
|
| 802 |
+
num_mask_tokens_at_start = (z_masked == self.mask_token).sum()
|
| 803 |
+
logging.info(f"num mask tokens at start: {num_mask_tokens_at_start}")
|
| 804 |
+
|
| 805 |
+
# our r steps
|
| 806 |
+
r_steps = torch.linspace(1e-10, 1, sampling_steps+1)[1:].to(self.device)
|
| 807 |
+
logging.info(f"r steps: {r_steps}")
|
| 808 |
+
|
| 809 |
+
# how many codebooks are we inferring vs conditioning on?
|
| 810 |
+
n_infer_codebooks = self.n_codebooks - self.n_conditioning_codebooks
|
| 811 |
+
logging.info(f"n infer codebooks: {n_infer_codebooks}")
|
| 812 |
+
|
| 813 |
+
#################
|
| 814 |
+
# begin sampling #
|
| 815 |
+
#################
|
| 816 |
+
|
| 817 |
+
for i in range(sampling_steps):
|
| 818 |
+
logging.info(f"step {i} of {sampling_steps}")
|
| 819 |
+
|
| 820 |
+
# our current temperature
|
| 821 |
+
tmpt = temperature[i]
|
| 822 |
+
logging.info(f"temperature: {tmpt}")
|
| 823 |
+
|
| 824 |
+
# our current schedule step
|
| 825 |
+
r = r_steps[i : i + 1]
|
| 826 |
+
logging.info(f"r: {r}")
|
| 827 |
+
|
| 828 |
+
# get latents
|
| 829 |
+
latents = self.embedding.from_codes(z_masked, codec)
|
| 830 |
+
logging.info(f"computed latents with shape: {latents.shape}")
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
# infer from latents
|
| 834 |
+
# NOTE: this collapses the codebook dimension into the sequence dimension
|
| 835 |
+
logits = self.forward(latents, r) # b, prob, seq
|
| 836 |
+
logits = logits.permute(0, 2, 1) # b, seq, prob
|
| 837 |
+
if typical_filtering:
|
| 838 |
+
typical_filter(logits,
|
| 839 |
+
typical_mass=typical_mass,
|
| 840 |
+
typical_min_tokens=typical_min_tokens
|
| 841 |
+
)
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
logging.info(f"permuted logits with shape: {logits.shape}")
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
# logits2probs
|
| 848 |
+
probs = torch.softmax(logits, dim=-1)
|
| 849 |
+
logging.info(f"computed probs with shape: {probs.shape}")
|
| 850 |
+
|
| 851 |
+
# flatten z_masked and mask, so we can deal with the sampling logic
|
| 852 |
+
# we'll unflatten them at the end of the loop for the next forward pass
|
| 853 |
+
z_masked = codebook_flatten(z_masked)
|
| 854 |
+
|
| 855 |
+
# sample from logits with multinomial sampling
|
| 856 |
+
b = probs.shape[0]
|
| 857 |
+
probs = rearrange(probs, "b seq prob -> (b seq) prob")
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
sampled_z = torch.multinomial(probs, 1).squeeze(-1)
|
| 862 |
+
|
| 863 |
+
sampled_z = rearrange(sampled_z, "(b seq)-> b seq", b=b)
|
| 864 |
+
probs = rearrange(probs, "(b seq) prob -> b seq prob", b=b)
|
| 865 |
+
logging.info(f"sampled z with shape: {sampled_z.shape}")
|
| 866 |
+
|
| 867 |
+
# update the mask
|
| 868 |
+
mask = (z_masked == self.mask_token).int()
|
| 869 |
+
logging.info(f"updated mask with shape: {mask.shape}")
|
| 870 |
+
|
| 871 |
+
# add z back into sampled z where the mask was false
|
| 872 |
+
sampled_z = torch.where(
|
| 873 |
+
mask.bool(), sampled_z, z_masked
|
| 874 |
+
)
|
| 875 |
+
logging.info(f"added z back into sampled z with shape: {sampled_z.shape}")
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
# get the confidences: which tokens did we sample?
|
| 879 |
+
selected_probs = (
|
| 880 |
+
torch.take_along_dim(
|
| 881 |
+
probs, sampled_z.long().unsqueeze(-1),
|
| 882 |
+
dim=-1
|
| 883 |
+
).squeeze(-1)
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
# ignore any tokens that weren't masked
|
| 887 |
+
selected_probs = torch.where(
|
| 888 |
+
mask.bool(), selected_probs, torch.inf
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
# get the num tokens to mask, according to the schedule
|
| 892 |
+
num_to_mask = torch.floor(_gamma(r) * num_mask_tokens_at_start).unsqueeze(1).long()
|
| 893 |
+
logging.info(f"num to mask: {num_to_mask}")
|
| 894 |
+
|
| 895 |
+
num_to_mask = torch.maximum(
|
| 896 |
+
torch.tensor(1),
|
| 897 |
+
torch.minimum(
|
| 898 |
+
mask.sum(dim=-1, keepdim=True) - 1,
|
| 899 |
+
num_to_mask
|
| 900 |
+
)
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
# get our new mask
|
| 905 |
+
# print(tmpt * (1-_gamma(r)))
|
| 906 |
+
mask = mask_by_random_topk(
|
| 907 |
+
num_to_mask, selected_probs, tmpt * (1-r)
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
# print(f"most confident tokens: ")
|
| 911 |
+
# print(torch.take_along_dim(
|
| 912 |
+
# sampled_z, selected_probs.argsort(descending=False), dim=-1)
|
| 913 |
+
# )
|
| 914 |
+
# print(sampled_z[~mask.bool()])
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
# update the mask
|
| 918 |
+
z_masked = torch.where(
|
| 919 |
+
mask.bool(), self.mask_token, sampled_z
|
| 920 |
+
)
|
| 921 |
+
logging.info(f"updated z_masked with shape: {z_masked.shape}")
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
z_masked = codebook_unflatten(z_masked, self.n_codebooks)
|
| 925 |
+
mask = codebook_unflatten(mask, self.n_codebooks)
|
| 926 |
+
logging.info(f"unflattened z_masked with shape: {z_masked.shape}")
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
logging.info(f"updated z_masked with shape: {z_masked.shape}")
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
logging.info(f"finished sampling")
|
| 933 |
+
z = codebook_unflatten(sampled_z, self.n_codebooks)
|
| 934 |
+
|
| 935 |
+
if return_signal:
|
| 936 |
+
return self.to_signal(z, codec)
|
| 937 |
+
else:
|
| 938 |
+
return z
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
def mask_by_random_topk(num_to_mask: int, probs: torch.Tensor, temperature: float = 1.0):
|
| 942 |
+
"""
|
| 943 |
+
Args:
|
| 944 |
+
num_to_mask (int): number of tokens to mask
|
| 945 |
+
probs (torch.Tensor): probabilities for each sampled event, shape (batch, seq)
|
| 946 |
+
temperature (float, optional): temperature. Defaults to 1.0.
|
| 947 |
+
"""
|
| 948 |
+
logging.info(f"masking by random topk")
|
| 949 |
+
logging.info(f"num to mask: {num_to_mask}")
|
| 950 |
+
logging.info(f"probs shape: {probs.shape}")
|
| 951 |
+
logging.info(f"temperature: {temperature}")
|
| 952 |
+
logging.info("")
|
| 953 |
+
|
| 954 |
+
confidence = torch.log(probs) + temperature * gumbel_noise_like(probs)
|
| 955 |
+
logging.info(f"confidence shape: {confidence.shape}")
|
| 956 |
+
|
| 957 |
+
sorted_confidence, sorted_idx = confidence.sort(dim=-1)
|
| 958 |
+
logging.info(f"sorted confidence shape: {sorted_confidence.shape}")
|
| 959 |
+
logging.info(f"sorted idx shape: {sorted_idx.shape}")
|
| 960 |
+
|
| 961 |
+
# get the cut off threshold, given the mask length
|
| 962 |
+
cut_off = torch.take_along_dim(
|
| 963 |
+
sorted_confidence, num_to_mask, axis=-1
|
| 964 |
+
)
|
| 965 |
+
logging.info(f"cut off shape: {cut_off.shape}")
|
| 966 |
+
|
| 967 |
+
# mask out the tokens
|
| 968 |
+
mask = confidence < cut_off
|
| 969 |
+
logging.info(f"mask shape: {mask.shape}")
|
| 970 |
+
|
| 971 |
+
return mask
|
| 972 |
+
|
| 973 |
+
def typical_filter(
|
| 974 |
+
logits,
|
| 975 |
+
typical_mass: float = 0.95,
|
| 976 |
+
typical_min_tokens: int = 1,):
|
| 977 |
+
nb, nt, _ = logits.shape
|
| 978 |
+
x_flat = rearrange(logits, "b t l -> (b t ) l")
|
| 979 |
+
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
|
| 980 |
+
x_flat_norm_p = torch.exp(x_flat_norm)
|
| 981 |
+
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
|
| 982 |
+
|
| 983 |
+
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
|
| 984 |
+
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
|
| 985 |
+
x_flat_cumsum = (
|
| 986 |
+
x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
|
| 987 |
+
)
|
| 988 |
+
|
| 989 |
+
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
|
| 990 |
+
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(
|
| 991 |
+
1, last_ind.view(-1, 1)
|
| 992 |
+
)
|
| 993 |
+
if typical_min_tokens > 1:
|
| 994 |
+
sorted_indices_to_remove[..., :typical_min_tokens] = 0
|
| 995 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 996 |
+
1, x_flat_indices, sorted_indices_to_remove
|
| 997 |
+
)
|
| 998 |
+
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
|
| 999 |
+
logits = rearrange(x_flat, "(b t) l -> b t l", t=nt)
|
| 1000 |
+
return logits
|
| 1001 |
+
|
| 1002 |
def sample_from_logits(
|
| 1003 |
logits,
|
| 1004 |
top_k: int = None,
|
|
|
|
| 1055 |
return inferred
|
| 1056 |
|
| 1057 |
|
|
|
|
| 1058 |
if __name__ == "__main__":
|
| 1059 |
# import argbind
|
| 1060 |
from .layers import num_params
|