Spaces:
Runtime error
Runtime error
| import openai | |
| import os | |
| openai.api_key=os.getenv("OPENAI_API_KEY") | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| from flask import Flask, jsonify, render_template, request | |
| import requests, json | |
| # import nltk | |
| # nltk.download("punkt") | |
| import shutil | |
| from werkzeug.utils import secure_filename | |
| from werkzeug.datastructures import FileStorage | |
| import nltk | |
| from datetime import datetime | |
| import openai | |
| from langchain.llms import OpenAI | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
| from langchain.document_loaders import SeleniumURLLoader, PyPDFLoader | |
| from langchain.vectorstores import Chroma | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.chains import VectorDBQA | |
| from langchain.document_loaders import UnstructuredFileLoader | |
| from langchain import PromptTemplate | |
| from langchain.chains import RetrievalQA | |
| from langchain.memory import ConversationBufferWindowMemory | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| #app = Flask(__name__) | |
| app = flask.Flask(__name__, template_folder="./") | |
| # Create a directory in a known location to save files to. | |
| uploads_dir = os.path.join(app.root_path,'static', 'uploads') | |
| os.makedirs(uploads_dir, exist_ok=True) | |
| vectordb = createVectorDB(loadKB(False, False, uploads_dir, None)) | |
| def test(): | |
| return "Docker hello" | |
| def KBUpload(): | |
| return render_template("KBTrain.html") | |
| def aiassist(): | |
| return render_template("index.html") | |
| def process_json(): | |
| print(f"\n{'*' * 100}\n") | |
| print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
| content_type = request.headers.get('Content-Type') | |
| if (content_type == 'application/json'): | |
| requestQuery = request.get_json() | |
| print(type(requestQuery)) | |
| custDetailsPresent=False | |
| customerName="" | |
| customerDistrict="" | |
| if("custDetails" in requestQuery): | |
| custDetailsPresent = True | |
| customerName=requestQuery['custDetails']['cName'] | |
| customerDistrict=requestQuery['custDetails']['cDistrict'] | |
| print("chain initiation") | |
| chainRAG=getRAGChain(customerName, customerDistrict, custDetailsPresent,vectordb) | |
| print("chain created") | |
| suggestionArray = [] | |
| for index, query in enumerate(requestQuery['message']): | |
| #message = answering(query) | |
| relevantDoc = vectordb.similarity_search_with_score(query) | |
| for doc in relevantDoc: | |
| print(f"\n{'-' * 100}\n") | |
| print("Document Source>>>>>> " + doc[len(doc) - 2].metadata['source'] + "\n\n") | |
| print("Page Content>>>>>> " + doc[len(doc) - 2].page_content + "\n\n") | |
| print("Similarity Score>>>> " + str(doc[len(doc) - 1])) | |
| print(f"\n{'-' * 100}\n") | |
| message = chainRAG.run({"query": query}) | |
| print("query:",query) | |
| print("Response:", message) | |
| if "I don't know" in message: | |
| message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?" | |
| responseJSON={"message":message,"id":index} | |
| suggestionArray.append(responseJSON) | |
| return jsonify(suggestions=suggestionArray) | |
| else: | |
| return 'Content-Type not supported!' | |
| def file_Upload(): | |
| fileprovided = not request.files.getlist('files[]')[0].filename == '' | |
| urlProvided = not request.form.getlist('weburl')[0] == '' | |
| print("*******") | |
| print("File Provided:" + str(fileprovided)) | |
| print("URL Provided:" + str(urlProvided)) | |
| print("*******") | |
| print(uploads_dir) | |
| documents = loadKB(fileprovided, urlProvided, uploads_dir, request) | |
| vectordb=createVectorDB(documents) | |
| return render_template("index.html") | |
| def createPrompt(cName, cCity, custDetailsPresent): | |
| cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n" | |
| print(cProfile) | |
| template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist. | |
| You are talking to the below customer whose information is provided in block delimited by <cp></cp>. | |
| Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps: | |
| If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
| Use the customer information to replace entities in the question before answering\n | |
| \n""" | |
| template2 = """ | |
| <ctx> | |
| {context} | |
| </ctx> | |
| <hs> | |
| {history} | |
| </hs> | |
| Question: {question} | |
| Answer: """ | |
| prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2 | |
| PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"]) | |
| return PROMPT | |
| def pretty_print_docs(docs): | |
| print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str( | |
| len(d.page_content)) + "\n\nDocument Source>>> " + d.metadata['source'] + "\n\nContent>>> " + d.page_content for | |
| i, d in enumerate(docs)])) | |
| def getEmbeddingModel(embeddingId): | |
| if (embeddingId == 1): | |
| embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
| else: | |
| embeddings = OpenAIEmbeddings() | |
| return embeddings | |
| def getLLMModel(LLMID): | |
| llm = OpenAI(temperature=0.0) | |
| return llm | |
| def clearKBUploadDirectory(uploads_dir): | |
| for filename in os.listdir(uploads_dir): | |
| file_path = os.path.join(uploads_dir, filename) | |
| print("Clearing Doc Directory. Trying to delete" + file_path) | |
| try: | |
| if os.path.isfile(file_path) or os.path.islink(file_path): | |
| os.unlink(file_path) | |
| elif os.path.isdir(file_path): | |
| shutil.rmtree(file_path) | |
| except Exception as e: | |
| print('Failed to delete %s. Reason: %s' % (file_path, e)) | |
| def loadKB(fileprovided, urlProvided, uploads_dir, request): | |
| documents = [] | |
| if fileprovided: | |
| # Delete Files | |
| clearKBUploadDirectory(uploads_dir) | |
| # Read and Embed New Files provided | |
| for file in request.files.getlist('files[]'): | |
| print("File Received>>>" + file.filename) | |
| file.save(os.path.join(uploads_dir, secure_filename(file.filename))) | |
| loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename))) | |
| documents.extend(loader.load()) | |
| else: | |
| loader = PyPDFLoader('./KnowledgeBase/Jio.pdf') | |
| documents.extend(loader.load()) | |
| if urlProvided: | |
| weburl = request.form.getlist('weburl') | |
| print(weburl) | |
| urlList = weburl[0].split(';') | |
| print(urlList) | |
| print("Selenium Started", datetime.now().strftime("%H:%M:%S")) | |
| # urlLoader=RecursiveUrlLoader(urlList[0]) | |
| urlLoader = SeleniumURLLoader(urlList) | |
| print("Selenium Completed", datetime.now().strftime("%H:%M:%S")) | |
| documents.extend(urlLoader.load()) | |
| return documents | |
| def getRAGChain(customerName,customerDistrict, custDetailsPresent,vectordb): | |
| chain = RetrievalQA.from_chain_type( | |
| llm=getLLMModel(0), | |
| chain_type='stuff', | |
| retriever=vectordb.as_retriever(), | |
| verbose=False, | |
| chain_type_kwargs={ | |
| "verbose": False, | |
| "prompt": createPrompt(customerName, customerDistrict, custDetailsPresent), | |
| "memory": ConversationBufferWindowMemory( | |
| k=3, | |
| memory_key="history", | |
| input_key="question"), | |
| } | |
| ) | |
| return chain | |
| def createVectorDB(documents): | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150) | |
| texts = text_splitter.split_documents(documents) | |
| print("All chunk List START ***********************\n\n") | |
| pretty_print_docs(texts) | |
| print("All chunk List END ***********************\n\n") | |
| embeddings = getEmbeddingModel(0) | |
| vectordb = Chroma.from_documents(texts, embeddings) | |
| return vectordb | |
| if __name__ == '__main__': | |
| app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860))) | |