Spaces:
Runtime error
Runtime error
Clémentine
commited on
Commit
·
4103566
1
Parent(s):
af33c63
added leaderboard component to simplify main script
Browse files- app.py +34 -175
- requirements.txt +2 -4
- src/display/utils.py +0 -13
- src/populate.py +1 -1
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
|
@@ -18,8 +18,6 @@ from src.display.utils import (
|
|
| 18 |
COLS,
|
| 19 |
EVAL_COLS,
|
| 20 |
EVAL_TYPES,
|
| 21 |
-
NUMERIC_INTERVALS,
|
| 22 |
-
TYPES,
|
| 23 |
AutoEvalColumn,
|
| 24 |
ModelType,
|
| 25 |
fields,
|
|
@@ -34,6 +32,7 @@ from src.submission.submit import add_new_eval
|
|
| 34 |
def restart_space():
|
| 35 |
API.restart_space(repo_id=REPO_ID)
|
| 36 |
|
|
|
|
| 37 |
try:
|
| 38 |
print(EVAL_REQUESTS_PATH)
|
| 39 |
snapshot_download(
|
|
@@ -50,8 +49,7 @@ except Exception:
|
|
| 50 |
restart_space()
|
| 51 |
|
| 52 |
|
| 53 |
-
|
| 54 |
-
leaderboard_df = original_df.copy()
|
| 55 |
|
| 56 |
(
|
| 57 |
finished_eval_queue_df,
|
|
@@ -59,77 +57,36 @@ leaderboard_df = original_df.copy()
|
|
| 59 |
pending_eval_queue_df,
|
| 60 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
return filtered_df
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 96 |
-
final_df = []
|
| 97 |
-
if query != "":
|
| 98 |
-
queries = [q.strip() for q in query.split(";")]
|
| 99 |
-
for _q in queries:
|
| 100 |
-
_q = _q.strip()
|
| 101 |
-
if _q != "":
|
| 102 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 103 |
-
if len(temp_filtered_df) > 0:
|
| 104 |
-
final_df.append(temp_filtered_df)
|
| 105 |
-
if len(final_df) > 0:
|
| 106 |
-
filtered_df = pd.concat(final_df)
|
| 107 |
-
filtered_df = filtered_df.drop_duplicates(
|
| 108 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
return filtered_df
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def filter_models(
|
| 115 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 116 |
-
) -> pd.DataFrame:
|
| 117 |
-
# Show all models
|
| 118 |
-
if show_deleted:
|
| 119 |
-
filtered_df = df
|
| 120 |
-
else: # Show only still on the hub models
|
| 121 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 122 |
-
|
| 123 |
-
type_emoji = [t[0] for t in type_query]
|
| 124 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 125 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 126 |
-
|
| 127 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 128 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 129 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 130 |
-
filtered_df = filtered_df.loc[mask]
|
| 131 |
-
|
| 132 |
-
return filtered_df
|
| 133 |
|
| 134 |
|
| 135 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -139,105 +96,7 @@ with demo:
|
|
| 139 |
|
| 140 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 141 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 142 |
-
|
| 143 |
-
with gr.Column():
|
| 144 |
-
with gr.Row():
|
| 145 |
-
search_bar = gr.Textbox(
|
| 146 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 147 |
-
show_label=False,
|
| 148 |
-
elem_id="search-bar",
|
| 149 |
-
)
|
| 150 |
-
with gr.Row():
|
| 151 |
-
shown_columns = gr.CheckboxGroup(
|
| 152 |
-
choices=[
|
| 153 |
-
c.name
|
| 154 |
-
for c in fields(AutoEvalColumn)
|
| 155 |
-
if not c.hidden and not c.never_hidden
|
| 156 |
-
],
|
| 157 |
-
value=[
|
| 158 |
-
c.name
|
| 159 |
-
for c in fields(AutoEvalColumn)
|
| 160 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 161 |
-
],
|
| 162 |
-
label="Select columns to show",
|
| 163 |
-
elem_id="column-select",
|
| 164 |
-
interactive=True,
|
| 165 |
-
)
|
| 166 |
-
with gr.Row():
|
| 167 |
-
deleted_models_visibility = gr.Checkbox(
|
| 168 |
-
value=False, label="Show gated/private/deleted models", interactive=True
|
| 169 |
-
)
|
| 170 |
-
with gr.Column(min_width=320):
|
| 171 |
-
#with gr.Box(elem_id="box-filter"):
|
| 172 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 173 |
-
label="Model types",
|
| 174 |
-
choices=[t.to_str() for t in ModelType],
|
| 175 |
-
value=[t.to_str() for t in ModelType],
|
| 176 |
-
interactive=True,
|
| 177 |
-
elem_id="filter-columns-type",
|
| 178 |
-
)
|
| 179 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 180 |
-
label="Precision",
|
| 181 |
-
choices=[i.value.name for i in Precision],
|
| 182 |
-
value=[i.value.name for i in Precision],
|
| 183 |
-
interactive=True,
|
| 184 |
-
elem_id="filter-columns-precision",
|
| 185 |
-
)
|
| 186 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 187 |
-
label="Model sizes (in billions of parameters)",
|
| 188 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 189 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 190 |
-
interactive=True,
|
| 191 |
-
elem_id="filter-columns-size",
|
| 192 |
-
)
|
| 193 |
-
|
| 194 |
-
leaderboard_table = gr.components.Dataframe(
|
| 195 |
-
value=leaderboard_df[
|
| 196 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 197 |
-
+ shown_columns.value
|
| 198 |
-
],
|
| 199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 200 |
-
datatype=TYPES,
|
| 201 |
-
elem_id="leaderboard-table",
|
| 202 |
-
interactive=False,
|
| 203 |
-
visible=True,
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 207 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 208 |
-
value=original_df[COLS],
|
| 209 |
-
headers=COLS,
|
| 210 |
-
datatype=TYPES,
|
| 211 |
-
visible=False,
|
| 212 |
-
)
|
| 213 |
-
search_bar.submit(
|
| 214 |
-
update_table,
|
| 215 |
-
[
|
| 216 |
-
hidden_leaderboard_table_for_search,
|
| 217 |
-
shown_columns,
|
| 218 |
-
filter_columns_type,
|
| 219 |
-
filter_columns_precision,
|
| 220 |
-
filter_columns_size,
|
| 221 |
-
deleted_models_visibility,
|
| 222 |
-
search_bar,
|
| 223 |
-
],
|
| 224 |
-
leaderboard_table,
|
| 225 |
-
)
|
| 226 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 227 |
-
selector.change(
|
| 228 |
-
update_table,
|
| 229 |
-
[
|
| 230 |
-
hidden_leaderboard_table_for_search,
|
| 231 |
-
shown_columns,
|
| 232 |
-
filter_columns_type,
|
| 233 |
-
filter_columns_precision,
|
| 234 |
-
filter_columns_size,
|
| 235 |
-
deleted_models_visibility,
|
| 236 |
-
search_bar,
|
| 237 |
-
],
|
| 238 |
-
leaderboard_table,
|
| 239 |
-
queue=True,
|
| 240 |
-
)
|
| 241 |
|
| 242 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 243 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
|
|
|
| 18 |
COLS,
|
| 19 |
EVAL_COLS,
|
| 20 |
EVAL_TYPES,
|
|
|
|
|
|
|
| 21 |
AutoEvalColumn,
|
| 22 |
ModelType,
|
| 23 |
fields,
|
|
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
| 35 |
+
### Space initialisation
|
| 36 |
try:
|
| 37 |
print(EVAL_REQUESTS_PATH)
|
| 38 |
snapshot_download(
|
|
|
|
| 49 |
restart_space()
|
| 50 |
|
| 51 |
|
| 52 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
| 53 |
|
| 54 |
(
|
| 55 |
finished_eval_queue_df,
|
|
|
|
| 57 |
pending_eval_queue_df,
|
| 58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 59 |
|
| 60 |
+
def init_leaderboard(dataframe):
|
| 61 |
+
if dataframe is None or dataframe.empty:
|
| 62 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 63 |
+
return Leaderboard(
|
| 64 |
+
value=dataframe,
|
| 65 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 66 |
+
select_columns=SelectColumns(
|
| 67 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 68 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 69 |
+
label="Select Columns to Display:",
|
| 70 |
+
),
|
| 71 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 72 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 73 |
+
filter_columns=[
|
| 74 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 75 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 76 |
+
ColumnFilter(
|
| 77 |
+
AutoEvalColumn.params.name,
|
| 78 |
+
type="slider",
|
| 79 |
+
min=0.01,
|
| 80 |
+
max=150,
|
| 81 |
+
label="Select the number of parameters (B)",
|
| 82 |
+
),
|
| 83 |
+
ColumnFilter(
|
| 84 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
+
),
|
| 86 |
+
],
|
| 87 |
+
bool_checkboxgroup_label="Hide models",
|
| 88 |
+
interactive=False,
|
| 89 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 96 |
|
| 97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 98 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 99 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
requirements.txt
CHANGED
|
@@ -1,18 +1,16 @@
|
|
| 1 |
APScheduler
|
| 2 |
black
|
| 3 |
-
click
|
| 4 |
datasets
|
| 5 |
gradio
|
|
|
|
|
|
|
| 6 |
gradio_client
|
| 7 |
huggingface-hub>=0.18.0
|
| 8 |
matplotlib
|
| 9 |
numpy
|
| 10 |
pandas
|
| 11 |
python-dateutil
|
| 12 |
-
requests
|
| 13 |
tqdm
|
| 14 |
transformers
|
| 15 |
tokenizers>=0.15.0
|
| 16 |
-
git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
|
| 17 |
-
accelerate
|
| 18 |
sentencepiece
|
|
|
|
| 1 |
APScheduler
|
| 2 |
black
|
|
|
|
| 3 |
datasets
|
| 4 |
gradio
|
| 5 |
+
gradio[oauth]
|
| 6 |
+
gradio_leaderboard==0.0.9
|
| 7 |
gradio_client
|
| 8 |
huggingface-hub>=0.18.0
|
| 9 |
matplotlib
|
| 10 |
numpy
|
| 11 |
pandas
|
| 12 |
python-dateutil
|
|
|
|
| 13 |
tqdm
|
| 14 |
transformers
|
| 15 |
tokenizers>=0.15.0
|
|
|
|
|
|
|
| 16 |
sentencepiece
|
src/display/utils.py
CHANGED
|
@@ -114,22 +114,9 @@ class Precision(Enum):
|
|
| 114 |
|
| 115 |
# Column selection
|
| 116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 117 |
-
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 118 |
-
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 119 |
-
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 120 |
|
| 121 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 122 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 123 |
|
| 124 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 125 |
|
| 126 |
-
NUMERIC_INTERVALS = {
|
| 127 |
-
"?": pd.Interval(-1, 0, closed="right"),
|
| 128 |
-
"~1.5": pd.Interval(0, 2, closed="right"),
|
| 129 |
-
"~3": pd.Interval(2, 4, closed="right"),
|
| 130 |
-
"~7": pd.Interval(4, 9, closed="right"),
|
| 131 |
-
"~13": pd.Interval(9, 20, closed="right"),
|
| 132 |
-
"~35": pd.Interval(20, 45, closed="right"),
|
| 133 |
-
"~60": pd.Interval(45, 70, closed="right"),
|
| 134 |
-
"70+": pd.Interval(70, 10000, closed="right"),
|
| 135 |
-
}
|
|
|
|
| 114 |
|
| 115 |
# Column selection
|
| 116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 119 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 120 |
|
| 121 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
|
@@ -19,7 +19,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 19 |
|
| 20 |
# filter out if any of the benchmarks have not been produced
|
| 21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 22 |
-
return
|
| 23 |
|
| 24 |
|
| 25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
|
| 19 |
|
| 20 |
# filter out if any of the benchmarks have not been produced
|
| 21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 22 |
+
return df
|
| 23 |
|
| 24 |
|
| 25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|