Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
a33e66d
1
Parent(s):
1b7afb7
look at model info if not in request file
Browse files
src/auto_leaderboard/model_metadata_type.py
CHANGED
|
@@ -12,18 +12,13 @@ class ModelInfo:
|
|
| 12 |
name: str
|
| 13 |
symbol: str # emoji
|
| 14 |
|
| 15 |
-
model_type_symbols = {
|
| 16 |
-
"fine-tuned": "🔶",
|
| 17 |
-
"pretrained": "🟢",
|
| 18 |
-
"RL-tuned": "🟦",
|
| 19 |
-
"instruction-tuned": "⭕",
|
| 20 |
-
}
|
| 21 |
|
| 22 |
class ModelType(Enum):
|
| 23 |
PT = ModelInfo(name="pretrained", symbol="🟢")
|
| 24 |
FT = ModelInfo(name="fine-tuned", symbol="🔶")
|
| 25 |
IFT = ModelInfo(name="instruction-tuned", symbol="⭕")
|
| 26 |
RL = ModelInfo(name="RL-tuned", symbol="🟦")
|
|
|
|
| 27 |
|
| 28 |
def to_str(self, separator = " "):
|
| 29 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
|
@@ -547,20 +542,39 @@ TYPE_METADATA: Dict[str, ModelType] = {
|
|
| 547 |
}
|
| 548 |
|
| 549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
def get_model_type(leaderboard_data: List[dict]):
|
| 551 |
for model_data in leaderboard_data:
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
request_file = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
|
| 555 |
-
request_file = glob.glob(request_file)
|
| 556 |
|
| 557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
model_data[AutoEvalColumn.model_type.name] = ""
|
| 559 |
model_data[AutoEvalColumn.model_type_symbol.name] = ""
|
| 560 |
continue
|
| 561 |
|
| 562 |
-
request_file = request_file[0]
|
| 563 |
-
|
| 564 |
try:
|
| 565 |
with open(request_file, "r") as f:
|
| 566 |
request = json.load(f)
|
|
@@ -571,9 +585,13 @@ def get_model_type(leaderboard_data: List[dict]):
|
|
| 571 |
try:
|
| 572 |
with open(request_file, "r") as f:
|
| 573 |
request = json.load(f)
|
| 574 |
-
model_type = request["model_type"]
|
| 575 |
-
model_data[AutoEvalColumn.model_type.name] = model_type
|
| 576 |
-
model_data[AutoEvalColumn.model_type_symbol.name] =
|
| 577 |
-
except
|
| 578 |
-
model_data[
|
| 579 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
name: str
|
| 13 |
symbol: str # emoji
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
class ModelType(Enum):
|
| 17 |
PT = ModelInfo(name="pretrained", symbol="🟢")
|
| 18 |
FT = ModelInfo(name="fine-tuned", symbol="🔶")
|
| 19 |
IFT = ModelInfo(name="instruction-tuned", symbol="⭕")
|
| 20 |
RL = ModelInfo(name="RL-tuned", symbol="🟦")
|
| 21 |
+
Unknown = ModelInfo(name="Unknown, add type to request file!", symbol="?")
|
| 22 |
|
| 23 |
def to_str(self, separator = " "):
|
| 24 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
|
|
|
| 542 |
}
|
| 543 |
|
| 544 |
|
| 545 |
+
def model_type_from_str(type):
|
| 546 |
+
if "fine-tuned" in type or "🔶" in type:
|
| 547 |
+
return ModelType.FT
|
| 548 |
+
if "pretrained" in type or "🟢" in type:
|
| 549 |
+
return ModelType.PT
|
| 550 |
+
if "RL-tuned" in type or "🟦" in type:
|
| 551 |
+
return ModelType.RL
|
| 552 |
+
if "instruction-tuned" in type or "⭕" in type:
|
| 553 |
+
return ModelType.IFT
|
| 554 |
+
return ModelType.Unknown
|
| 555 |
+
|
| 556 |
+
|
| 557 |
def get_model_type(leaderboard_data: List[dict]):
|
| 558 |
for model_data in leaderboard_data:
|
| 559 |
+
request_files = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
|
| 560 |
+
request_files = glob.glob(request_files)
|
|
|
|
|
|
|
| 561 |
|
| 562 |
+
request_file = ""
|
| 563 |
+
if len(request_files) == 1:
|
| 564 |
+
request_file = request_files[0]
|
| 565 |
+
elif len(request_files) > 1:
|
| 566 |
+
request_files = sorted(request_files, reverse=True)
|
| 567 |
+
for tmp_request_file in request_files:
|
| 568 |
+
with open(tmp_request_file, "r") as f:
|
| 569 |
+
req_content = json.load(f)
|
| 570 |
+
if req_content["status"] == "FINISHED" and req_content["precision"] == model_data["Precision"].split(".")[-1]:
|
| 571 |
+
request_file = tmp_request_file
|
| 572 |
+
|
| 573 |
+
if request_file == "":
|
| 574 |
model_data[AutoEvalColumn.model_type.name] = ""
|
| 575 |
model_data[AutoEvalColumn.model_type_symbol.name] = ""
|
| 576 |
continue
|
| 577 |
|
|
|
|
|
|
|
| 578 |
try:
|
| 579 |
with open(request_file, "r") as f:
|
| 580 |
request = json.load(f)
|
|
|
|
| 585 |
try:
|
| 586 |
with open(request_file, "r") as f:
|
| 587 |
request = json.load(f)
|
| 588 |
+
model_type = model_type_from_str(request["model_type"])
|
| 589 |
+
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
| 590 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol + ("🔺" if is_delta else "")
|
| 591 |
+
except KeyError:
|
| 592 |
+
if model_data["model_name_for_query"] in TYPE_METADATA:
|
| 593 |
+
model_data[AutoEvalColumn.model_type.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
| 594 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol + ("🔺" if is_delta else "")
|
| 595 |
+
else:
|
| 596 |
+
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
|
| 597 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
|