whisper_gradio / app.py
demavior's picture
Update app.py
6dc8dcd verified
raw
history blame contribute delete
809 Bytes
import gradio as gr
from transformers import pipeline
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def transcribe(audio):
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
device=device,
)
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# sample = ds[0]["audio"]
# prediction = pipe(sample.copy(), batch_size=8)["text"]
prediction = pipe(audio)["text"]
print(prediction)
return prediction
gradio_app = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs=gr.Textbox(label="Result"),
title="Transcribed",
)
if __name__ == "__main__":
gradio_app.launch(share=True)