Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from dejan.veczip import veczip
|
| 7 |
+
import csv
|
| 8 |
+
import ast
|
| 9 |
+
|
| 10 |
+
def is_numeric(s):
|
| 11 |
+
"""Checks if a given string is numeric."""
|
| 12 |
+
try:
|
| 13 |
+
float(s)
|
| 14 |
+
return True
|
| 15 |
+
except:
|
| 16 |
+
return False
|
| 17 |
+
|
| 18 |
+
def parse_as_array(val):
|
| 19 |
+
"""Parses a string as an array of numbers."""
|
| 20 |
+
if isinstance(val, (int, float)):
|
| 21 |
+
return [val]
|
| 22 |
+
val_str = str(val).strip()
|
| 23 |
+
if val_str.startswith("[") and val_str.endswith("]"):
|
| 24 |
+
try:
|
| 25 |
+
arr = ast.literal_eval(val_str)
|
| 26 |
+
if isinstance(arr, list) and all(is_numeric(str(x)) for x in arr):
|
| 27 |
+
return arr
|
| 28 |
+
return None
|
| 29 |
+
except:
|
| 30 |
+
return None
|
| 31 |
+
parts = val_str.split(",")
|
| 32 |
+
if len(parts) > 1 and all(is_numeric(p.strip()) for p in parts):
|
| 33 |
+
return [float(p.strip()) for p in parts]
|
| 34 |
+
return None
|
| 35 |
+
|
| 36 |
+
def get_line_pattern(row):
|
| 37 |
+
"""Detects the pattern (text, number, or array) of a row."""
|
| 38 |
+
pattern = []
|
| 39 |
+
for val in row:
|
| 40 |
+
arr = parse_as_array(val)
|
| 41 |
+
if arr is not None:
|
| 42 |
+
pattern.append('arr')
|
| 43 |
+
else:
|
| 44 |
+
if is_numeric(val):
|
| 45 |
+
pattern.append('num')
|
| 46 |
+
else:
|
| 47 |
+
pattern.append('text')
|
| 48 |
+
return pattern
|
| 49 |
+
|
| 50 |
+
def detect_header(lines):
|
| 51 |
+
"""Detects if a CSV has a header."""
|
| 52 |
+
if len(lines) < 2:
|
| 53 |
+
return False
|
| 54 |
+
first_line_pattern = get_line_pattern(lines[0])
|
| 55 |
+
subsequent_patterns = [get_line_pattern(r) for r in lines[1:]]
|
| 56 |
+
if len(subsequent_patterns) > 1:
|
| 57 |
+
if all(p == subsequent_patterns[0] for p in subsequent_patterns) and first_line_pattern != subsequent_patterns[0]:
|
| 58 |
+
return True
|
| 59 |
+
else:
|
| 60 |
+
if subsequent_patterns and first_line_pattern != subsequent_patterns[0]:
|
| 61 |
+
return True
|
| 62 |
+
return False
|
| 63 |
+
|
| 64 |
+
def looks_like_id_column(col_values):
|
| 65 |
+
"""Checks if a column looks like an ID column (sequential integers)."""
|
| 66 |
+
try:
|
| 67 |
+
nums = [int(float(v)) for v in col_values]
|
| 68 |
+
return nums == list(range(nums[0], nums[0] + len(nums)))
|
| 69 |
+
except:
|
| 70 |
+
return False
|
| 71 |
+
|
| 72 |
+
def detect_columns(file_path):
|
| 73 |
+
"""Detects embedding and metadata columns in a CSV file."""
|
| 74 |
+
with open(file_path, "r", newline="", encoding="utf-8") as f:
|
| 75 |
+
try:
|
| 76 |
+
sample = f.read(1024*10) # Read a larger sample for sniffing
|
| 77 |
+
dialect = csv.Sniffer().sniff(sample, delimiters=[',','\t',';','|'])
|
| 78 |
+
delimiter = dialect.delimiter
|
| 79 |
+
except:
|
| 80 |
+
delimiter = ','
|
| 81 |
+
f.seek(0) # reset file pointer
|
| 82 |
+
reader = csv.reader(f, delimiter=delimiter)
|
| 83 |
+
first_lines = list(reader)[:10]
|
| 84 |
+
|
| 85 |
+
if not first_lines:
|
| 86 |
+
raise ValueError("No data")
|
| 87 |
+
|
| 88 |
+
has_header = detect_header(first_lines)
|
| 89 |
+
if has_header:
|
| 90 |
+
header = first_lines[0]
|
| 91 |
+
data = first_lines[1:]
|
| 92 |
+
else:
|
| 93 |
+
header = []
|
| 94 |
+
data = first_lines
|
| 95 |
+
|
| 96 |
+
if not data:
|
| 97 |
+
return has_header, [], [], delimiter
|
| 98 |
+
|
| 99 |
+
cols = list(zip(*data))
|
| 100 |
+
|
| 101 |
+
candidate_arrays = []
|
| 102 |
+
candidate_numeric = []
|
| 103 |
+
id_like_columns = set()
|
| 104 |
+
text_like_columns = set()
|
| 105 |
+
|
| 106 |
+
for ci, col in enumerate(cols):
|
| 107 |
+
col = list(col)
|
| 108 |
+
parsed_rows = [parse_as_array(val) for val in col]
|
| 109 |
+
|
| 110 |
+
if all(r is not None for r in parsed_rows):
|
| 111 |
+
lengths = {len(r) for r in parsed_rows}
|
| 112 |
+
if len(lengths) == 1:
|
| 113 |
+
candidate_arrays.append(ci)
|
| 114 |
+
continue
|
| 115 |
+
else:
|
| 116 |
+
text_like_columns.add(ci)
|
| 117 |
+
continue
|
| 118 |
+
|
| 119 |
+
if all(is_numeric(v) for v in col):
|
| 120 |
+
if looks_like_id_column(col):
|
| 121 |
+
id_like_columns.add(ci)
|
| 122 |
+
else:
|
| 123 |
+
candidate_numeric.append(ci)
|
| 124 |
+
else:
|
| 125 |
+
text_like_columns.add(ci)
|
| 126 |
+
|
| 127 |
+
identified_embedding_columns = set(candidate_arrays)
|
| 128 |
+
identified_metadata_columns = set()
|
| 129 |
+
|
| 130 |
+
if candidate_arrays:
|
| 131 |
+
identified_metadata_columns.update(candidate_numeric)
|
| 132 |
+
else:
|
| 133 |
+
if len(candidate_numeric) > 1:
|
| 134 |
+
identified_embedding_columns.update(candidate_numeric)
|
| 135 |
+
else:
|
| 136 |
+
identified_metadata_columns.update(candidate_numeric)
|
| 137 |
+
|
| 138 |
+
identified_metadata_columns.update(id_like_columns)
|
| 139 |
+
identified_metadata_columns.update(text_like_columns)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
if header:
|
| 143 |
+
for ci, col_name in enumerate(header):
|
| 144 |
+
if col_name.lower() == 'id':
|
| 145 |
+
if ci in identified_embedding_columns:
|
| 146 |
+
identified_embedding_columns.remove(ci)
|
| 147 |
+
identified_metadata_columns.add(ci)
|
| 148 |
+
break
|
| 149 |
+
|
| 150 |
+
emb_cols = [header[i] if header and i < len(header) else i for i in identified_embedding_columns]
|
| 151 |
+
meta_cols = [header[i] if header and i < len(header) else i for i in identified_metadata_columns]
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
return has_header, emb_cols, meta_cols, delimiter
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def load_and_validate_embeddings(input_file, target_dims):
|
| 158 |
+
"""Loads, validates, and summarizes embedding data from a CSV."""
|
| 159 |
+
print(f"Loading data from {input_file}...")
|
| 160 |
+
has_header, embedding_columns, metadata_columns, delimiter = detect_columns(input_file)
|
| 161 |
+
data = pd.read_csv(input_file, header=0 if has_header else None, delimiter=delimiter)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def is_valid_row(row):
|
| 165 |
+
for col in embedding_columns:
|
| 166 |
+
if parse_as_array(row[col]) is None:
|
| 167 |
+
return False
|
| 168 |
+
return True
|
| 169 |
+
|
| 170 |
+
valid_rows_filter = data.apply(is_valid_row, axis=1)
|
| 171 |
+
data = data[valid_rows_filter]
|
| 172 |
+
|
| 173 |
+
print("\n=== File Summary ===")
|
| 174 |
+
print(f"File: {input_file}")
|
| 175 |
+
print(f"Rows: {len(data)}")
|
| 176 |
+
print(f"Metadata Columns: {metadata_columns}")
|
| 177 |
+
print(f"Embedding Columns: {embedding_columns}")
|
| 178 |
+
print("====================\n")
|
| 179 |
+
|
| 180 |
+
return data, embedding_columns, metadata_columns, has_header, list(data.columns)
|
| 181 |
+
|
| 182 |
+
def save_compressed_embeddings(output_file, metadata, compressed_embeddings, embedding_columns, original_columns, has_header):
|
| 183 |
+
"""Saves compressed embeddings to a CSV file."""
|
| 184 |
+
print(f"Saving compressed data to {output_file}...")
|
| 185 |
+
metadata = metadata.copy()
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
for i, col in enumerate(embedding_columns):
|
| 189 |
+
metadata[col] = [compressed_embeddings[i][j].tolist() for j in range(compressed_embeddings[i].shape[0])]
|
| 190 |
+
|
| 191 |
+
header_option = True if has_header else False
|
| 192 |
+
final_df = metadata.reindex(columns=original_columns) if original_columns else metadata
|
| 193 |
+
final_df.to_csv(output_file, index=False, header=header_option)
|
| 194 |
+
print(f"Data saved to {output_file}.")
|
| 195 |
+
|
| 196 |
+
def run_veczip(input_file, target_dims=16):
|
| 197 |
+
"""Runs veczip compression on the input data."""
|
| 198 |
+
data, embedding_columns, metadata_columns, has_header, original_columns = load_and_validate_embeddings(input_file, target_dims)
|
| 199 |
+
|
| 200 |
+
all_embeddings = []
|
| 201 |
+
for col in embedding_columns:
|
| 202 |
+
embeddings = np.array([parse_as_array(x) for x in data[col].values])
|
| 203 |
+
all_embeddings.append(embeddings)
|
| 204 |
+
|
| 205 |
+
combined_embeddings = np.concatenate(all_embeddings, axis=0)
|
| 206 |
+
compressor = veczip(target_dims=target_dims)
|
| 207 |
+
retained_indices = compressor.compress(combined_embeddings)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
compressed_embeddings = []
|
| 211 |
+
for embeddings in all_embeddings:
|
| 212 |
+
compressed_embeddings.append(embeddings[:, retained_indices])
|
| 213 |
+
|
| 214 |
+
temp_output = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
|
| 215 |
+
save_compressed_embeddings(temp_output.name, data[metadata_columns], compressed_embeddings, embedding_columns, original_columns, has_header)
|
| 216 |
+
return temp_output.name
|
| 217 |
+
|
| 218 |
+
# Streamlit App
|
| 219 |
+
def main():
|
| 220 |
+
st.title("Veczip Embeddings Compressor")
|
| 221 |
+
|
| 222 |
+
uploaded_file = st.file_uploader("Upload CSV file with embeddings", type=["csv"])
|
| 223 |
+
|
| 224 |
+
if uploaded_file:
|
| 225 |
+
try:
|
| 226 |
+
with st.spinner("Analyzing and compressing embeddings..."):
|
| 227 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
| 228 |
+
temp_file.write(uploaded_file.read())
|
| 229 |
+
temp_file.close()
|
| 230 |
+
output_file_path = run_veczip(temp_file.name)
|
| 231 |
+
with open(output_file_path, 'rb') as f:
|
| 232 |
+
st.download_button(
|
| 233 |
+
label="Download Compressed CSV",
|
| 234 |
+
data=f,
|
| 235 |
+
file_name="compressed_embeddings.csv",
|
| 236 |
+
mime="text/csv"
|
| 237 |
+
)
|
| 238 |
+
os.unlink(temp_file.name)
|
| 239 |
+
os.unlink(output_file_path)
|
| 240 |
+
st.success("Compression complete! Download your compressed file below.")
|
| 241 |
+
except Exception as e:
|
| 242 |
+
st.error(f"Error processing file: {e}")
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
main()
|