Spaces:
Running
on
Zero
Running
on
Zero
Commit
ยท
2c1a288
1
Parent(s):
edced0a
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024 DeepSeek.
|
| 2 |
+
#
|
| 3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
| 4 |
+
# this software and associated documentation files (the "Software"), to deal in
|
| 5 |
+
# the Software without restriction, including without limitation the rights to
|
| 6 |
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
| 7 |
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
| 8 |
+
# subject to the following conditions:
|
| 9 |
+
#
|
| 10 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 11 |
+
# copies or substantial portions of the Software.
|
| 12 |
+
#
|
| 13 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 14 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
| 15 |
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
| 16 |
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
| 17 |
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
| 18 |
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 19 |
+
|
| 20 |
+
# -*- coding:utf-8 -*-
|
| 21 |
+
from argparse import ArgumentParser
|
| 22 |
+
|
| 23 |
+
import io
|
| 24 |
+
import sys
|
| 25 |
+
import base64
|
| 26 |
+
from PIL import Image
|
| 27 |
+
|
| 28 |
+
import gradio as gr
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
from deepseek_vl2.serve.app_modules.gradio_utils import (
|
| 32 |
+
cancel_outputing,
|
| 33 |
+
delete_last_conversation,
|
| 34 |
+
reset_state,
|
| 35 |
+
reset_textbox,
|
| 36 |
+
wrap_gen_fn,
|
| 37 |
+
)
|
| 38 |
+
from deepseek_vl2.serve.app_modules.overwrites import reload_javascript
|
| 39 |
+
from deepseek_vl2.serve.app_modules.presets import (
|
| 40 |
+
CONCURRENT_COUNT,
|
| 41 |
+
MAX_EVENTS,
|
| 42 |
+
description,
|
| 43 |
+
description_top,
|
| 44 |
+
title
|
| 45 |
+
)
|
| 46 |
+
from deepseek_vl2.serve.app_modules.utils import (
|
| 47 |
+
configure_logger,
|
| 48 |
+
is_variable_assigned,
|
| 49 |
+
strip_stop_words,
|
| 50 |
+
parse_ref_bbox,
|
| 51 |
+
pil_to_base64,
|
| 52 |
+
display_example
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
from deepseek_vl2.serve.inference import (
|
| 56 |
+
convert_conversation_to_prompts,
|
| 57 |
+
deepseek_generate,
|
| 58 |
+
load_model,
|
| 59 |
+
)
|
| 60 |
+
from deepseek_vl2.models.conversation import SeparatorStyle
|
| 61 |
+
|
| 62 |
+
logger = configure_logger()
|
| 63 |
+
|
| 64 |
+
MODELS = [
|
| 65 |
+
"DeepSeek-VL2-tiny",
|
| 66 |
+
"DeepSeek-VL2-small",
|
| 67 |
+
"DeepSeek-VL2",
|
| 68 |
+
|
| 69 |
+
"deepseek-ai/deepseek-vl2-tiny",
|
| 70 |
+
"deepseek-ai/deepseek-vl2-small",
|
| 71 |
+
"deepseek-ai/deepseek-vl2",
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
DEPLOY_MODELS = dict()
|
| 75 |
+
IMAGE_TOKEN = "<image>"
|
| 76 |
+
|
| 77 |
+
examples_list = [
|
| 78 |
+
# visual grounding - 1
|
| 79 |
+
[
|
| 80 |
+
["images/visual_grounding_1.jpeg"],
|
| 81 |
+
"<|ref|>The giraffe at the back.<|/ref|>",
|
| 82 |
+
],
|
| 83 |
+
|
| 84 |
+
# visual grounding - 2
|
| 85 |
+
[
|
| 86 |
+
["images/visual_grounding_2.jpg"],
|
| 87 |
+
"ๆพๅฐ<|ref|>ๆทกๅฎๅง<|/ref|>",
|
| 88 |
+
],
|
| 89 |
+
|
| 90 |
+
# visual grounding - 3
|
| 91 |
+
[
|
| 92 |
+
["images/visual_grounding_3.png"],
|
| 93 |
+
"Find all the <|ref|>Watermelon slices<|/ref|>",
|
| 94 |
+
],
|
| 95 |
+
|
| 96 |
+
# grounding conversation
|
| 97 |
+
[
|
| 98 |
+
["images/grounding_conversation_1.jpeg"],
|
| 99 |
+
"<|grounding|>I want to throw out the trash now, what should I do?",
|
| 100 |
+
],
|
| 101 |
+
|
| 102 |
+
# in-context visual grounding
|
| 103 |
+
[
|
| 104 |
+
[
|
| 105 |
+
"images/incontext_visual_grounding_1.jpeg",
|
| 106 |
+
"images/icl_vg_2.jpeg"
|
| 107 |
+
],
|
| 108 |
+
"<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image."
|
| 109 |
+
],
|
| 110 |
+
|
| 111 |
+
# vqa
|
| 112 |
+
[
|
| 113 |
+
["images/vqa_1.jpg"],
|
| 114 |
+
"Describe each stage of this image in detail",
|
| 115 |
+
],
|
| 116 |
+
|
| 117 |
+
# multi-images
|
| 118 |
+
[
|
| 119 |
+
[
|
| 120 |
+
"images/multi_image_1.jpeg",
|
| 121 |
+
"images/mi_2.jpeg",
|
| 122 |
+
"images/mi_3.jpeg"
|
| 123 |
+
],
|
| 124 |
+
"่ฝๅธฎๆ็จ่ฟๅ ไธช้ฃๆๅไธ้่ๅ?",
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def fetch_model(model_name: str, dtype=torch.bfloat16):
|
| 131 |
+
global args, DEPLOY_MODELS
|
| 132 |
+
|
| 133 |
+
if args.local_path:
|
| 134 |
+
model_path = args.local_path
|
| 135 |
+
else:
|
| 136 |
+
model_path = model_name
|
| 137 |
+
|
| 138 |
+
if model_name in DEPLOY_MODELS:
|
| 139 |
+
model_info = DEPLOY_MODELS[model_name]
|
| 140 |
+
print(f"{model_name} has been loaded.")
|
| 141 |
+
else:
|
| 142 |
+
print(f"{model_name} is loading...")
|
| 143 |
+
DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype)
|
| 144 |
+
print(f"Load {model_name} successfully...")
|
| 145 |
+
model_info = DEPLOY_MODELS[model_name]
|
| 146 |
+
|
| 147 |
+
return model_info
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def generate_prompt_with_history(
|
| 151 |
+
text, images, history, vl_chat_processor, tokenizer, max_length=2048
|
| 152 |
+
):
|
| 153 |
+
"""
|
| 154 |
+
Generate a prompt with history for the deepseek application.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
text (str): The text prompt.
|
| 158 |
+
images (list[PIL.Image.Image]): The image prompt.
|
| 159 |
+
history (list): List of previous conversation messages.
|
| 160 |
+
tokenizer: The tokenizer used for encoding the prompt.
|
| 161 |
+
max_length (int): The maximum length of the prompt.
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
|
| 165 |
+
"""
|
| 166 |
+
global IMAGE_TOKEN
|
| 167 |
+
|
| 168 |
+
sft_format = "deepseek"
|
| 169 |
+
user_role_ind = 0
|
| 170 |
+
bot_role_ind = 1
|
| 171 |
+
|
| 172 |
+
# Initialize conversation
|
| 173 |
+
conversation = vl_chat_processor.new_chat_template()
|
| 174 |
+
|
| 175 |
+
if history:
|
| 176 |
+
conversation.messages = history
|
| 177 |
+
|
| 178 |
+
if images is not None and len(images) > 0:
|
| 179 |
+
|
| 180 |
+
num_image_tags = text.count(IMAGE_TOKEN)
|
| 181 |
+
num_images = len(images)
|
| 182 |
+
|
| 183 |
+
if num_images > num_image_tags:
|
| 184 |
+
pad_image_tags = num_images - num_image_tags
|
| 185 |
+
image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags)
|
| 186 |
+
|
| 187 |
+
# append the <image> in a new line after the text prompt
|
| 188 |
+
text = image_tokens + "\n" + text
|
| 189 |
+
elif num_images < num_image_tags:
|
| 190 |
+
remove_image_tags = num_image_tags - num_images
|
| 191 |
+
text = text.replace(IMAGE_TOKEN, "", remove_image_tags)
|
| 192 |
+
|
| 193 |
+
# print(f"prompt = {text}, len(images) = {len(images)}")
|
| 194 |
+
text = (text, images)
|
| 195 |
+
|
| 196 |
+
conversation.append_message(conversation.roles[user_role_ind], text)
|
| 197 |
+
conversation.append_message(conversation.roles[bot_role_ind], "")
|
| 198 |
+
|
| 199 |
+
# Create a copy of the conversation to avoid history truncation in the UI
|
| 200 |
+
conversation_copy = conversation.copy()
|
| 201 |
+
logger.info("=" * 80)
|
| 202 |
+
logger.info(get_prompt(conversation))
|
| 203 |
+
|
| 204 |
+
rounds = len(conversation.messages) // 2
|
| 205 |
+
|
| 206 |
+
for _ in range(rounds):
|
| 207 |
+
current_prompt = get_prompt(conversation)
|
| 208 |
+
current_prompt = (
|
| 209 |
+
current_prompt.replace("</s>", "")
|
| 210 |
+
if sft_format == "deepseek"
|
| 211 |
+
else current_prompt
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
|
| 215 |
+
return conversation_copy
|
| 216 |
+
|
| 217 |
+
if len(conversation.messages) % 2 != 0:
|
| 218 |
+
gr.Error("The messages between user and assistant are not paired.")
|
| 219 |
+
return
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
for _ in range(2): # pop out two messages in a row
|
| 223 |
+
conversation.messages.pop(0)
|
| 224 |
+
except IndexError:
|
| 225 |
+
gr.Error("Input text processing failed, unable to respond in this round.")
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
gr.Error("Prompt could not be generated within max_length limit.")
|
| 229 |
+
return None
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def to_gradio_chatbot(conv):
|
| 233 |
+
"""Convert the conversation to gradio chatbot format."""
|
| 234 |
+
ret = []
|
| 235 |
+
for i, (role, msg) in enumerate(conv.messages[conv.offset:]):
|
| 236 |
+
if i % 2 == 0:
|
| 237 |
+
if type(msg) is tuple:
|
| 238 |
+
msg, images = msg
|
| 239 |
+
|
| 240 |
+
if isinstance(images, list):
|
| 241 |
+
for j, image in enumerate(images):
|
| 242 |
+
if isinstance(image, str):
|
| 243 |
+
with open(image, "rb") as f:
|
| 244 |
+
data = f.read()
|
| 245 |
+
img_b64_str = base64.b64encode(data).decode()
|
| 246 |
+
image_str = (f'<img src="data:image/png;base64,{img_b64_str}" '
|
| 247 |
+
f'alt="user upload image" style="max-width: 300px; height: auto;" />')
|
| 248 |
+
else:
|
| 249 |
+
image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400)
|
| 250 |
+
|
| 251 |
+
# replace the <image> tag in the message
|
| 252 |
+
msg = msg.replace(IMAGE_TOKEN, image_str, 1)
|
| 253 |
+
|
| 254 |
+
else:
|
| 255 |
+
pass
|
| 256 |
+
|
| 257 |
+
ret.append([msg, None])
|
| 258 |
+
else:
|
| 259 |
+
ret[-1][-1] = msg
|
| 260 |
+
return ret
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def to_gradio_history(conv):
|
| 264 |
+
"""Convert the conversation to gradio history state."""
|
| 265 |
+
return conv.messages[conv.offset:]
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def get_prompt(conv) -> str:
|
| 269 |
+
"""Get the prompt for generation."""
|
| 270 |
+
system_prompt = conv.system_template.format(system_message=conv.system_message)
|
| 271 |
+
if conv.sep_style == SeparatorStyle.DeepSeek:
|
| 272 |
+
seps = [conv.sep, conv.sep2]
|
| 273 |
+
if system_prompt == "" or system_prompt is None:
|
| 274 |
+
ret = ""
|
| 275 |
+
else:
|
| 276 |
+
ret = system_prompt + seps[0]
|
| 277 |
+
for i, (role, message) in enumerate(conv.messages):
|
| 278 |
+
if message:
|
| 279 |
+
if type(message) is tuple: # multimodal message
|
| 280 |
+
message, _ = message
|
| 281 |
+
ret += role + ": " + message + seps[i % 2]
|
| 282 |
+
else:
|
| 283 |
+
ret += role + ":"
|
| 284 |
+
return ret
|
| 285 |
+
else:
|
| 286 |
+
return conv.get_prompt()
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def transfer_input(input_text, input_images):
|
| 290 |
+
print("transferring input text and input image")
|
| 291 |
+
|
| 292 |
+
return (
|
| 293 |
+
input_text,
|
| 294 |
+
input_images,
|
| 295 |
+
gr.update(value=""),
|
| 296 |
+
gr.update(value=None),
|
| 297 |
+
gr.Button(visible=True)
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
@wrap_gen_fn
|
| 302 |
+
def predict(
|
| 303 |
+
text,
|
| 304 |
+
images,
|
| 305 |
+
chatbot,
|
| 306 |
+
history,
|
| 307 |
+
top_p,
|
| 308 |
+
temperature,
|
| 309 |
+
repetition_penalty,
|
| 310 |
+
max_length_tokens,
|
| 311 |
+
max_context_length_tokens,
|
| 312 |
+
model_select_dropdown,
|
| 313 |
+
):
|
| 314 |
+
"""
|
| 315 |
+
Function to predict the response based on the user's input and selected model.
|
| 316 |
+
|
| 317 |
+
Parameters:
|
| 318 |
+
user_text (str): The input text from the user.
|
| 319 |
+
user_image (str): The input image from the user.
|
| 320 |
+
chatbot (str): The chatbot's name.
|
| 321 |
+
history (str): The history of the chat.
|
| 322 |
+
top_p (float): The top-p parameter for the model.
|
| 323 |
+
temperature (float): The temperature parameter for the model.
|
| 324 |
+
max_length_tokens (int): The maximum length of tokens for the model.
|
| 325 |
+
max_context_length_tokens (int): The maximum length of context tokens for the model.
|
| 326 |
+
model_select_dropdown (str): The selected model from the dropdown.
|
| 327 |
+
|
| 328 |
+
Returns:
|
| 329 |
+
generator: A generator that yields the chatbot outputs, history, and status.
|
| 330 |
+
"""
|
| 331 |
+
print("running the prediction function")
|
| 332 |
+
try:
|
| 333 |
+
tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown)
|
| 334 |
+
|
| 335 |
+
if text == "":
|
| 336 |
+
yield chatbot, history, "Empty context."
|
| 337 |
+
return
|
| 338 |
+
except KeyError:
|
| 339 |
+
yield [[text, "No Model Found"]], [], "No Model Found"
|
| 340 |
+
return
|
| 341 |
+
|
| 342 |
+
if images is None:
|
| 343 |
+
images = []
|
| 344 |
+
|
| 345 |
+
# load images
|
| 346 |
+
pil_images = []
|
| 347 |
+
for img_or_file in images:
|
| 348 |
+
try:
|
| 349 |
+
# load as pil image
|
| 350 |
+
if isinstance(images, Image.Image):
|
| 351 |
+
pil_images.append(img_or_file)
|
| 352 |
+
else:
|
| 353 |
+
image = Image.open(img_or_file.name).convert("RGB")
|
| 354 |
+
pil_images.append(image)
|
| 355 |
+
except Exception as e:
|
| 356 |
+
print(f"Error loading image: {e}")
|
| 357 |
+
|
| 358 |
+
conversation = generate_prompt_with_history(
|
| 359 |
+
text,
|
| 360 |
+
pil_images,
|
| 361 |
+
history,
|
| 362 |
+
vl_chat_processor,
|
| 363 |
+
tokenizer,
|
| 364 |
+
max_length=max_context_length_tokens,
|
| 365 |
+
)
|
| 366 |
+
all_conv, last_image = convert_conversation_to_prompts(conversation)
|
| 367 |
+
|
| 368 |
+
stop_words = conversation.stop_str
|
| 369 |
+
gradio_chatbot_output = to_gradio_chatbot(conversation)
|
| 370 |
+
|
| 371 |
+
full_response = ""
|
| 372 |
+
with torch.no_grad():
|
| 373 |
+
for x in deepseek_generate(
|
| 374 |
+
conversations=all_conv,
|
| 375 |
+
vl_gpt=vl_gpt,
|
| 376 |
+
vl_chat_processor=vl_chat_processor,
|
| 377 |
+
tokenizer=tokenizer,
|
| 378 |
+
stop_words=stop_words,
|
| 379 |
+
max_length=max_length_tokens,
|
| 380 |
+
temperature=temperature,
|
| 381 |
+
repetition_penalty=repetition_penalty,
|
| 382 |
+
top_p=top_p,
|
| 383 |
+
chunk_size=args.chunk_size
|
| 384 |
+
):
|
| 385 |
+
full_response += x
|
| 386 |
+
response = strip_stop_words(full_response, stop_words)
|
| 387 |
+
conversation.update_last_message(response)
|
| 388 |
+
gradio_chatbot_output[-1][1] = response
|
| 389 |
+
|
| 390 |
+
# sys.stdout.write(x)
|
| 391 |
+
# sys.stdout.flush()
|
| 392 |
+
|
| 393 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
| 394 |
+
|
| 395 |
+
if last_image is not None:
|
| 396 |
+
# TODO always render the last image's visual grounding image
|
| 397 |
+
vg_image = parse_ref_bbox(response, last_image)
|
| 398 |
+
if vg_image is not None:
|
| 399 |
+
vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400)
|
| 400 |
+
gradio_chatbot_output[-1][1] += vg_base64
|
| 401 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
| 402 |
+
|
| 403 |
+
print("flushed result to gradio")
|
| 404 |
+
torch.cuda.empty_cache()
|
| 405 |
+
|
| 406 |
+
if is_variable_assigned("x"):
|
| 407 |
+
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
|
| 408 |
+
print(
|
| 409 |
+
f"temperature: {temperature}, "
|
| 410 |
+
f"top_p: {top_p}, "
|
| 411 |
+
f"repetition_penalty: {repetition_penalty}, "
|
| 412 |
+
f"max_length_tokens: {max_length_tokens}"
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
# @wrap_gen_fn
|
| 419 |
+
def retry(
|
| 420 |
+
text,
|
| 421 |
+
images,
|
| 422 |
+
chatbot,
|
| 423 |
+
history,
|
| 424 |
+
top_p,
|
| 425 |
+
temperature,
|
| 426 |
+
repetition_penalty,
|
| 427 |
+
max_length_tokens,
|
| 428 |
+
max_context_length_tokens,
|
| 429 |
+
model_select_dropdown,
|
| 430 |
+
):
|
| 431 |
+
if len(history) == 0:
|
| 432 |
+
yield (chatbot, history, "Empty context")
|
| 433 |
+
return
|
| 434 |
+
|
| 435 |
+
chatbot.pop()
|
| 436 |
+
history.pop()
|
| 437 |
+
text = history.pop()[-1]
|
| 438 |
+
if type(text) is tuple:
|
| 439 |
+
text, image = text
|
| 440 |
+
|
| 441 |
+
yield from predict(
|
| 442 |
+
text,
|
| 443 |
+
images,
|
| 444 |
+
chatbot,
|
| 445 |
+
history,
|
| 446 |
+
top_p,
|
| 447 |
+
temperature,
|
| 448 |
+
repetition_penalty,
|
| 449 |
+
max_length_tokens,
|
| 450 |
+
max_context_length_tokens,
|
| 451 |
+
model_select_dropdown,
|
| 452 |
+
args.chunk_size
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def preview_images(files):
|
| 457 |
+
if files is None:
|
| 458 |
+
return []
|
| 459 |
+
|
| 460 |
+
image_paths = []
|
| 461 |
+
for file in files:
|
| 462 |
+
# ไฝฟ็จ file.name ่ทๅๆไปถ่ทฏๅพ
|
| 463 |
+
# image = Image.open(file.name)
|
| 464 |
+
image_paths.append(file.name)
|
| 465 |
+
return image_paths # ่ฟๅๆๆๅพ็่ทฏๅพ๏ผ็จไบ้ข่ง
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def build_demo(args):
|
| 469 |
+
# fetch model
|
| 470 |
+
if not args.lazy_load:
|
| 471 |
+
fetch_model(args.model_name)
|
| 472 |
+
|
| 473 |
+
with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f:
|
| 474 |
+
customCSS = f.read()
|
| 475 |
+
|
| 476 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 477 |
+
history = gr.State([])
|
| 478 |
+
input_text = gr.State()
|
| 479 |
+
input_images = gr.State()
|
| 480 |
+
|
| 481 |
+
with gr.Row():
|
| 482 |
+
gr.HTML(title)
|
| 483 |
+
status_display = gr.Markdown("Success", elem_id="status_display")
|
| 484 |
+
gr.Markdown(description_top)
|
| 485 |
+
|
| 486 |
+
with gr.Row(equal_height=True):
|
| 487 |
+
with gr.Column(scale=4):
|
| 488 |
+
with gr.Row():
|
| 489 |
+
chatbot = gr.Chatbot(
|
| 490 |
+
elem_id="deepseek_chatbot",
|
| 491 |
+
show_share_button=True,
|
| 492 |
+
bubble_full_width=False,
|
| 493 |
+
height=600,
|
| 494 |
+
)
|
| 495 |
+
with gr.Row():
|
| 496 |
+
with gr.Column(scale=4):
|
| 497 |
+
text_box = gr.Textbox(
|
| 498 |
+
show_label=False, placeholder="Enter text", container=False
|
| 499 |
+
)
|
| 500 |
+
with gr.Column(
|
| 501 |
+
min_width=70,
|
| 502 |
+
):
|
| 503 |
+
submitBtn = gr.Button("Send")
|
| 504 |
+
with gr.Column(
|
| 505 |
+
min_width=70,
|
| 506 |
+
):
|
| 507 |
+
cancelBtn = gr.Button("Stop")
|
| 508 |
+
with gr.Row():
|
| 509 |
+
emptyBtn = gr.Button(
|
| 510 |
+
"๐งน New Conversation",
|
| 511 |
+
)
|
| 512 |
+
retryBtn = gr.Button("๐ Regenerate")
|
| 513 |
+
delLastBtn = gr.Button("๐๏ธ Remove Last Turn")
|
| 514 |
+
|
| 515 |
+
with gr.Column():
|
| 516 |
+
upload_images = gr.Files(file_types=["image"], show_label=True)
|
| 517 |
+
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
|
| 518 |
+
|
| 519 |
+
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
|
| 520 |
+
|
| 521 |
+
with gr.Tab(label="Parameter Setting") as parameter_row:
|
| 522 |
+
top_p = gr.Slider(
|
| 523 |
+
minimum=-0,
|
| 524 |
+
maximum=1.0,
|
| 525 |
+
value=0.9,
|
| 526 |
+
step=0.05,
|
| 527 |
+
interactive=True,
|
| 528 |
+
label="Top-p",
|
| 529 |
+
)
|
| 530 |
+
temperature = gr.Slider(
|
| 531 |
+
minimum=0,
|
| 532 |
+
maximum=1.0,
|
| 533 |
+
value=0.1,
|
| 534 |
+
step=0.1,
|
| 535 |
+
interactive=True,
|
| 536 |
+
label="Temperature",
|
| 537 |
+
)
|
| 538 |
+
repetition_penalty = gr.Slider(
|
| 539 |
+
minimum=0.0,
|
| 540 |
+
maximum=2.0,
|
| 541 |
+
value=1.1,
|
| 542 |
+
step=0.1,
|
| 543 |
+
interactive=True,
|
| 544 |
+
label="Repetition penalty",
|
| 545 |
+
)
|
| 546 |
+
max_length_tokens = gr.Slider(
|
| 547 |
+
minimum=0,
|
| 548 |
+
maximum=4096,
|
| 549 |
+
value=2048,
|
| 550 |
+
step=8,
|
| 551 |
+
interactive=True,
|
| 552 |
+
label="Max Generation Tokens",
|
| 553 |
+
)
|
| 554 |
+
max_context_length_tokens = gr.Slider(
|
| 555 |
+
minimum=0,
|
| 556 |
+
maximum=8192,
|
| 557 |
+
value=4096,
|
| 558 |
+
step=128,
|
| 559 |
+
interactive=True,
|
| 560 |
+
label="Max History Tokens",
|
| 561 |
+
)
|
| 562 |
+
model_select_dropdown = gr.Dropdown(
|
| 563 |
+
label="Select Models",
|
| 564 |
+
choices=[args.model_name],
|
| 565 |
+
multiselect=False,
|
| 566 |
+
value=args.model_name,
|
| 567 |
+
interactive=True,
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
# show images, but not visible
|
| 571 |
+
show_images = gr.HTML(visible=False)
|
| 572 |
+
# show_images = gr.Image(type="pil", interactive=False, visible=False)
|
| 573 |
+
|
| 574 |
+
def format_examples(examples_list):
|
| 575 |
+
examples = []
|
| 576 |
+
for images, texts in examples_list:
|
| 577 |
+
examples.append([images, display_example(images), texts])
|
| 578 |
+
|
| 579 |
+
return examples
|
| 580 |
+
|
| 581 |
+
gr.Examples(
|
| 582 |
+
examples=format_examples(examples_list),
|
| 583 |
+
inputs=[upload_images, show_images, text_box],
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
gr.Markdown(description)
|
| 587 |
+
|
| 588 |
+
input_widgets = [
|
| 589 |
+
input_text,
|
| 590 |
+
input_images,
|
| 591 |
+
chatbot,
|
| 592 |
+
history,
|
| 593 |
+
top_p,
|
| 594 |
+
temperature,
|
| 595 |
+
repetition_penalty,
|
| 596 |
+
max_length_tokens,
|
| 597 |
+
max_context_length_tokens,
|
| 598 |
+
model_select_dropdown,
|
| 599 |
+
]
|
| 600 |
+
output_widgets = [chatbot, history, status_display]
|
| 601 |
+
|
| 602 |
+
transfer_input_args = dict(
|
| 603 |
+
fn=transfer_input,
|
| 604 |
+
inputs=[text_box, upload_images],
|
| 605 |
+
outputs=[input_text, input_images, text_box, upload_images, submitBtn],
|
| 606 |
+
show_progress=True,
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
predict_args = dict(
|
| 610 |
+
fn=predict,
|
| 611 |
+
inputs=input_widgets,
|
| 612 |
+
outputs=output_widgets,
|
| 613 |
+
show_progress=True,
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
retry_args = dict(
|
| 617 |
+
fn=retry,
|
| 618 |
+
inputs=input_widgets,
|
| 619 |
+
outputs=output_widgets,
|
| 620 |
+
show_progress=True,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
reset_args = dict(
|
| 624 |
+
fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
predict_events = [
|
| 628 |
+
text_box.submit(**transfer_input_args).then(**predict_args),
|
| 629 |
+
submitBtn.click(**transfer_input_args).then(**predict_args),
|
| 630 |
+
]
|
| 631 |
+
|
| 632 |
+
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
|
| 633 |
+
emptyBtn.click(**reset_args)
|
| 634 |
+
retryBtn.click(**retry_args)
|
| 635 |
+
|
| 636 |
+
delLastBtn.click(
|
| 637 |
+
delete_last_conversation,
|
| 638 |
+
[chatbot, history],
|
| 639 |
+
output_widgets,
|
| 640 |
+
show_progress=True,
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
|
| 644 |
+
|
| 645 |
+
return demo
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
if __name__ == "__main__":
|
| 649 |
+
parser = ArgumentParser()
|
| 650 |
+
parser.add_argument("--model_name", type=str, default="deepseek-ai/deepseek-vl2-small", choices=MODELS, help="model name")
|
| 651 |
+
parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional")
|
| 652 |
+
parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address")
|
| 653 |
+
parser.add_argument("--port", type=int, default=37913, help="port number")
|
| 654 |
+
parser.add_argument("--root_path", type=str, default="", help="root path")
|
| 655 |
+
parser.add_argument("--lazy_load", action='store_true')
|
| 656 |
+
parser.add_argument("--chunk_size", type=int, default=512,
|
| 657 |
+
help="chunk size for the model for prefiiling. "
|
| 658 |
+
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
|
| 659 |
+
"Otherwise, default value is -1, which means we do not use incremental_prefilling.")
|
| 660 |
+
args = parser.parse_args()
|
| 661 |
+
|
| 662 |
+
demo = build_demo(args)
|
| 663 |
+
demo.title = "DeepSeek-VL2 Chatbot"
|
| 664 |
+
|
| 665 |
+
reload_javascript()
|
| 666 |
+
demo.queue(concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS).launch(
|
| 667 |
+
# share=False,
|
| 668 |
+
share=True,
|
| 669 |
+
favicon_path="deepseek_vl2/serve/assets/favicon.ico",
|
| 670 |
+
)
|