# type: ignore -- ignores linting import issues when using multiple virtual environments import streamlit.components.v1 as components import streamlit as st import pandas as pd import logging from deeploy import Client, CreateEvaluation from constants import ( relationship_dict, occupation_dict, education_dict, type_of_work_dict, countries_dict, marital_status_dict, ) # reset Plotly theme after streamlit import import plotly.io as pio pio.templates.default = "plotly" logging.basicConfig(level=logging.INFO) st.set_page_config(layout="wide") st.title("Loan application model example") def get_model_url(): model_url = st.text_area( "Model URL (without the /explain endpoint, default is the demo deployment)", "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/dc8c359d-5f61-4107-8b0f-de97ec120289/", height=125, ) elems = model_url.split("/") try: workspace_id = elems[4] deployment_id = elems[6] except IndexError: workspace_id = "" deployment_id = "" return model_url, workspace_id, deployment_id def ChangeButtonColour(widget_label, font_color, background_color="transparent"): # func to change button colors htmlstr = f""" """ components.html(f"{htmlstr}", height=0, width=0) with st.sidebar: st.image("deeploy_logo_wide.png", width=250) # Ask for model URL and token host = st.text_input("Host (Changing is optional)", "app.deeploy.ml") model_url, workspace_id, deployment_id = get_model_url() st.session_state.deployment_id = deployment_id deployment_token = st.text_input("Deeploy API token", "my-secret-token") if deployment_token == "my-secret-token": st.warning("Please enter Deeploy API token.") client_options = { "host": host, "deployment_token": deployment_token, "workspace_id": workspace_id, } client = Client(**client_options) if "expander_toggle" not in st.session_state: st.session_state.expander_toggle = True if "evaluation_submitted" not in st.session_state: st.session_state.evaluation_submitted = False if "predict_button_clicked" not in st.session_state: st.session_state.predict_button_clicked = False if "request_body" not in st.session_state: st.session_state.request_body = None if "deployment_id" not in st.session_state: st.session_state.deployment_id = None if "exp" not in st.session_state: st.session_state.exp = None def form_request_body(): """Create the request body for the prediction endpoint""" marital_status_id = marital_status_dict[st.session_state.marital_status] native_country_id = countries_dict[st.session_state.native_country] relationship_id = relationship_dict[st.session_state.relationship] occupation_id = occupation_dict[st.session_state.occupation] education_id = education_dict[st.session_state.education] type_of_work_id = type_of_work_dict[st.session_state.type_of_work] return { "instances": [ [ st.session_state.age, type_of_work_id, education_id, marital_status_id, occupation_id, relationship_id, st.session_state.capital_gain, st.session_state.capital_loss, st.session_state.hours_per_week, native_country_id, ] ] } def predict_callback(): """Callback function to call the prediction endpoint""" request_body = form_request_body() # Make sure we have the latest values after user input st.session_state.exp = None with st.spinner("Loading prediction and explanation..."): try: # Call the explain endpoint as it also includes the prediction exp = client.explain( request_body=request_body, deployment_id=st.session_state.deployment_id ) st.session_state.exp = exp except Exception as e: logging.error(e) st.error( "Failed to get a prediction and explanation." + "Check whether you are using the right model URL and token for predictions. " + "Contact Deeploy if the problem persists." ) st.session_state.predict_button_clicked = True st.session_state.evaluation_submitted = False def hide_expander(): st.session_state.expander_toggle = False def show_expander(): st.session_state.expander_toggle = True def submit_and_clear(agree: str, comment: str = None): if agree == "yes": evaluation_input: CreateEvaluation = { "agree": True, "comment": comment, } else: desired_output = not predictions[0] evaluation_input: CreateEvaluation = { "agree": False, "desired_output": { "predictions": [desired_output] }, "comment": comment, } try: client.evaluate(st.session_state.deployment_id, prediction_log_id, evaluation_input) st.session_state.evaluation_submitted = True st.session_state.predict_button_clicked = False st.session_state.exp = None show_expander() except Exception as e: logging.error(e) st.error( "Failed to submit feedback." + "Check whether you are using the right model URL and token for evaluations. " + "Contact Deeploy if the problem persists." ) # with st.expander("Debug session state", expanded=False): # st.write(st.session_state) # Attributes with st.expander("**Loan application form**", expanded=st.session_state.expander_toggle): # Split view in 2 columns col1, col2 = st.columns(2) with col1: # Create input fields for attributes from constant dicts age = st.number_input("Age", min_value=10, max_value=100, value=30, key="age", on_change=predict_callback) marital_status = st.selectbox("Marital Status", marital_status_dict.keys(), key="marital_status", on_change=predict_callback,) native_country = st.selectbox( "Native Country", countries_dict.keys(), index=len(countries_dict) - 1, key="native_country",on_change=predict_callback ) relationship = st.selectbox("Family situation", relationship_dict.keys(), key="relationship", on_change=predict_callback) occupation = st.selectbox("Occupation", occupation_dict.keys(), index=1, key="occupation", on_change=predict_callback) with col2: education = st.selectbox("Highest education level", education_dict.keys(), key="education", index=4, on_change=predict_callback) type_of_work = st.selectbox("Type of work", type_of_work_dict.keys(), key="type_of_work", on_change=predict_callback) hours_per_week = st.number_input( "Working hours per week", min_value=0, max_value=100, value=40, key="hours_per_week", on_change=predict_callback, ) capital_gain = st.number_input( "Yearly income [€]", min_value=0, max_value=10000000, value=70000, key="capital_gain", on_change=predict_callback, ) capital_loss = st.number_input( "Yearly expenditures [€]", min_value=0, max_value=10000000, value=60000, key="capital_loss", on_change=predict_callback, ) data_df = pd.DataFrame( [ [ st.session_state.age, st.session_state.type_of_work, st.session_state.education, st.session_state.marital_status, st.session_state.occupation, st.session_state.relationship, st.session_state.capital_gain, st.session_state.capital_loss, st.session_state.hours_per_week, st.session_state.native_country, ] ], columns=[ "Age", "Type of work", "Highest education level", "Marital Status", "Occupation", "Family situation", "Yearly Income [€]", "Yearly expenditures [€]", "Working hours per week", "Native Country", ], ) data_df_t = data_df.T # Show predict button if token is set if deployment_token != "my-secret-token" and st.session_state.exp is None: predict_button = st.button( "Send loan application", key="predict_button", help="Click to get the AI prediction.", on_click=predict_callback, ) if st.session_state.evaluation_submitted: st.success("Evaluation submitted successfully!") # Show prediction and explanation after predict button is clicked elif st.session_state.predict_button_clicked and st.session_state.exp is not None: try: exp = st.session_state.exp # Read explanation to dataframe from json predictions = exp["predictions"] request_log_id = exp["requestLogId"] prediction_log_id = exp["predictionLogIds"][0] exp_df = pd.DataFrame( [exp["explanations"][0]["shap_values"]], columns=exp["featureLabels"] ) exp_df.columns = data_df.columns exp_df_t = exp_df.T # Merge data and explanation exp_df_t = data_df_t.merge(exp_df_t, left_index=True, right_index=True) weight_feat = "Weight" feat_val_col = "Value" exp_df_t.columns = [feat_val_col, weight_feat] exp_df_t["Feature"] = exp_df_t.index exp_df_t = exp_df_t[["Feature", feat_val_col, weight_feat]] exp_df_t[feat_val_col] = exp_df_t[feat_val_col].astype(str) # Filter values below 0.01 exp_df_t = exp_df_t[ (exp_df_t[weight_feat] > 0.01) | (exp_df_t[weight_feat] < -0.01) ] exp_df_t[weight_feat] = exp_df_t[weight_feat].astype(float).round(2) pos_exp_df_t = exp_df_t[exp_df_t[weight_feat] > 0] pos_exp_df_t = pos_exp_df_t.sort_values(by=weight_feat, ascending=False) neg_exp_df_t = exp_df_t[exp_df_t[weight_feat] < 0] neg_exp_df_t = neg_exp_df_t.sort_values(by=weight_feat, ascending=True) neg_exp_df_t[weight_feat] = neg_exp_df_t[weight_feat].abs() # Get 3 features with highest positive relevance score pos_feats = pos_exp_df_t[weight_feat].nlargest(3).index.tolist() # For feature, get feature value and concatenate into a single string pos_feats = [ f"{feat}: {pos_exp_df_t.loc[feat, feat_val_col]}" for feat in pos_feats ] # Get 3 features with highest negative relevance score neg_feats = neg_exp_df_t[weight_feat].nlargest(3).index.tolist() # For feature, get feature value and concatenate into a single string neg_feats = [ f"{feat}: {neg_exp_df_t.loc[feat, feat_val_col]}" for feat in neg_feats ] if predictions[0]: # Show prediction st.subheader("Loan Decision: :green[Approve]", divider="green") # Format subheader to green st.markdown( "", unsafe_allow_html=True ) col1, col2 = st.columns(2) with col1: # If prediction is positive, first show positive features, then negative features st.success( "The most important characteristics in favor of loan approval are: \n - " + " \n- ".join(pos_feats) ) with col2: st.error( "However, the following features weight against the loan applicant: \n - " + " \n- ".join(neg_feats) # + " \n For more details, see full explanation of the credit assessment below.", ) else: st.subheader("Loan Decision: :red[Reject]", divider="red") col1, col2 = st.columns(2) with col1: # If prediction is negative, first show negative features, then positive features st.error( "The most important reasons for loan rejection are: \n - " + " \n - ".join(neg_feats) ) with col2: st.success( "However, the following factors weigh in favor of the loan applicant: \n - " + " \n - ".join(pos_feats) ) try: # Show explanation if predictions[0]: col_pos, col_neg = st.columns(2) else: col_neg, col_pos = st.columns(2) # Swap columns if prediction is negative with col_pos: st.subheader("Factors :green[in favor] of loan approval") # st.success("**Factors in favor of loan approval**") st.dataframe( pos_exp_df_t, hide_index=True, width=600, column_config={ "Weight": st.column_config.ProgressColumn( "Weight", width="small", format=" ", min_value=0, max_value=1, ) }, ) with col_neg: st.subheader("Factors :red[against] loan approval") # st.error("**Factors against loan approval**") st.dataframe( neg_exp_df_t, hide_index=True, width=600, column_config={ "Weight": st.column_config.ProgressColumn( "Weight", width="small", format=" ", min_value=0, max_value=1, ) }, ) except Exception as e: logging.error(e) st.error( "Failed to show the explanation." + "Refresh the page to reset the application." + "Contact Deeploy if the problem persists." ) st.divider() if not st.session_state.evaluation_submitted: # Add prediction evaluation st.subheader("Evaluation: Do you agree with the loan assessment?") st.write( "AI model predictions always come with a certain level of uncertainty. Evaluate the correctness of the assessment based on your expertise and experience." ) st.session_state.evaluation_input = {} comment = st.text_input("Your assessment:", placeholder="For example: 'Income is too low, given applicant's background'") cols = st.columns(4) col_yes, col_no = cols[:2] with col_yes: yes_button = st.button( "Yes, I agree", key="yes_button", use_container_width=True, help="Click if you agree with the prediction", on_click=submit_and_clear, args=["yes", comment] ) ChangeButtonColour("Yes, I agree", "white", "green") with col_no: no_button = st.button( "No, I disagree", key="no_button", use_container_width=True, help="Click if you disagree with the prediction", type="primary", on_click=submit_and_clear, args=["no", comment] ) ChangeButtonColour("No, I disagree", "white", "#DD360C") # Red color for disagree button except Exception as e: logging.error(e) st.error( "Failed to retrieve the prediction or explanation." + "Check whether you are using the right model URL and Token. " + "Contact Deeploy if the problem persists." )