Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers.models import ModelMixin, UNet3DConditionModel | |
| from diffusers.models.attention_processor import LoRAAttnProcessor | |
| from diffusers.utils import ( | |
| floats_tensor, | |
| logging, | |
| skip_mps, | |
| torch_device, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from ..test_modeling_common import ModelTesterMixin | |
| logger = logging.get_logger(__name__) | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| def create_lora_layers(model): | |
| lora_attn_procs = {} | |
| for name in model.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = model.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = model.config.block_out_channels[block_id] | |
| lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) | |
| lora_attn_procs[name] = lora_attn_procs[name].to(model.device) | |
| # add 1 to weights to mock trained weights | |
| with torch.no_grad(): | |
| lora_attn_procs[name].to_q_lora.up.weight += 1 | |
| lora_attn_procs[name].to_k_lora.up.weight += 1 | |
| lora_attn_procs[name].to_v_lora.up.weight += 1 | |
| lora_attn_procs[name].to_out_lora.up.weight += 1 | |
| return lora_attn_procs | |
| class UNet3DConditionModelTests(ModelTesterMixin, unittest.TestCase): | |
| model_class = UNet3DConditionModel | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 4 | |
| num_frames = 4 | |
| sizes = (32, 32) | |
| noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| time_step = torch.tensor([10]).to(torch_device) | |
| encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) | |
| return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
| def input_shape(self): | |
| return (4, 4, 32, 32) | |
| def output_shape(self): | |
| return (4, 4, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (32, 64), | |
| "down_block_types": ( | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| "up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), | |
| "cross_attention_dim": 32, | |
| "attention_head_dim": 8, | |
| "out_channels": 4, | |
| "in_channels": 4, | |
| "layers_per_block": 1, | |
| "sample_size": 32, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_xformers_enable_works(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.enable_xformers_memory_efficient_attention() | |
| assert ( | |
| model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
| == "XFormersAttnProcessor" | |
| ), "xformers is not enabled" | |
| # Overriding to set `norm_num_groups` needs to be different for this model. | |
| def test_forward_with_norm_groups(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["norm_num_groups"] = 32 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| # Overriding since the UNet3D outputs a different structure. | |
| def test_determinism(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps" and isinstance(model, ModelMixin): | |
| model(**self.dummy_input) | |
| first = model(**inputs_dict) | |
| if isinstance(first, dict): | |
| first = first.sample | |
| second = model(**inputs_dict) | |
| if isinstance(second, dict): | |
| second = second.sample | |
| out_1 = first.cpu().numpy() | |
| out_2 = second.cpu().numpy() | |
| out_1 = out_1[~np.isnan(out_1)] | |
| out_2 = out_2[~np.isnan(out_2)] | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| def test_model_attention_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["attention_head_dim"] = 8 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| model.set_attention_slice("auto") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice("max") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice(2) | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| # (`attn_processors`) needs to be implemented in this model for this test. | |
| # def test_lora_processors(self): | |
| # (`attn_processors`) needs to be implemented in this model for this test. | |
| # def test_lora_save_load(self): | |
| # (`attn_processors`) needs to be implemented for this test in the model. | |
| # def test_lora_save_load_safetensors(self): | |
| # (`attn_processors`) needs to be implemented for this test in the model. | |
| # def test_lora_save_safetensors_load_torch(self): | |
| # (`attn_processors`) needs to be implemented for this test. | |
| # def test_lora_save_torch_force_load_safetensors_error(self): | |
| # (`attn_processors`) needs to be added for this test. | |
| # def test_lora_on_off(self): | |
| def test_lora_xformers_on_off(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["attention_head_dim"] = 4 | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| lora_attn_procs = create_lora_layers(model) | |
| model.set_attn_processor(lora_attn_procs) | |
| # default | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| on_sample = model(**inputs_dict).sample | |
| model.disable_xformers_memory_efficient_attention() | |
| off_sample = model(**inputs_dict).sample | |
| assert (sample - on_sample).abs().max() < 1e-4 | |
| assert (sample - off_sample).abs().max() < 1e-4 | |
| # (todo: sayakpaul) implement SLOW tests. | |