Spaces:
Build error
Build error
| import types | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from transformers import CLIPTextModelWithProjection, CLIPTokenizer | |
| from transformers.models.clip.modeling_clip import CLIPTextModelOutput | |
| from diffusers.models import PriorTransformer | |
| from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline | |
| from diffusers.schedulers import UnCLIPScheduler | |
| from diffusers.utils import logging, randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| image = image.to(device=device) | |
| image_embeddings = image # take image as image_embeddings | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| uncond_embeddings = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([uncond_embeddings, image_embeddings]) | |
| return image_embeddings | |
| class StableUnCLIPPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| prior: PriorTransformer, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder: CLIPTextModelWithProjection, | |
| prior_scheduler: UnCLIPScheduler, | |
| decoder_pipe_kwargs: Optional[dict] = None, | |
| ): | |
| super().__init__() | |
| decoder_pipe_kwargs = {"image_encoder": None} if decoder_pipe_kwargs is None else decoder_pipe_kwargs | |
| decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype | |
| self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained( | |
| "lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs | |
| ) | |
| # replace `_encode_image` method | |
| self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe) | |
| self.register_modules( | |
| prior=prior, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| prior_scheduler=prior_scheduler, | |
| ) | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, | |
| text_attention_mask: Optional[torch.Tensor] = None, | |
| ): | |
| if text_model_output is None: | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| text_mask = text_inputs.attention_mask.bool().to(device) | |
| if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | |
| removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
| text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
| text_embeddings = text_encoder_output.text_embeds | |
| text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
| else: | |
| batch_size = text_model_output[0].shape[0] | |
| text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1] | |
| text_mask = text_attention_mask | |
| text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| if do_classifier_free_guidance: | |
| uncond_tokens = [""] * batch_size | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
| uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | |
| uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds | |
| uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt) | |
| uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len) | |
| seq_len = uncond_text_encoder_hidden_states.shape[1] | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| # done duplicates | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
| text_mask = torch.cat([uncond_text_mask, text_mask]) | |
| return text_embeddings, text_encoder_hidden_states, text_mask | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"): | |
| return self.device | |
| for module in self.prior.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| def to(self, torch_device: Optional[Union[str, torch.device]] = None): | |
| self.decoder_pipe.to(torch_device) | |
| super().to(torch_device) | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_images_per_prompt: int = 1, | |
| prior_num_inference_steps: int = 25, | |
| generator: Optional[torch.Generator] = None, | |
| prior_latents: Optional[torch.FloatTensor] = None, | |
| text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, | |
| text_attention_mask: Optional[torch.Tensor] = None, | |
| prior_guidance_scale: float = 4.0, | |
| decoder_guidance_scale: float = 8.0, | |
| decoder_num_inference_steps: int = 50, | |
| decoder_num_images_per_prompt: Optional[int] = 1, | |
| decoder_eta: float = 0.0, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ): | |
| if prompt is not None: | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| else: | |
| batch_size = text_model_output[0].shape[0] | |
| device = self._execution_device | |
| batch_size = batch_size * num_images_per_prompt | |
| do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 | |
| text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
| prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask | |
| ) | |
| # prior | |
| self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) | |
| prior_timesteps_tensor = self.prior_scheduler.timesteps | |
| embedding_dim = self.prior.config.embedding_dim | |
| prior_latents = self.prepare_latents( | |
| (batch_size, embedding_dim), | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| prior_latents, | |
| self.prior_scheduler, | |
| ) | |
| for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents | |
| predicted_image_embedding = self.prior( | |
| latent_model_input, | |
| timestep=t, | |
| proj_embedding=text_embeddings, | |
| encoder_hidden_states=text_encoder_hidden_states, | |
| attention_mask=text_mask, | |
| ).predicted_image_embedding | |
| if do_classifier_free_guidance: | |
| predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) | |
| predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( | |
| predicted_image_embedding_text - predicted_image_embedding_uncond | |
| ) | |
| if i + 1 == prior_timesteps_tensor.shape[0]: | |
| prev_timestep = None | |
| else: | |
| prev_timestep = prior_timesteps_tensor[i + 1] | |
| prior_latents = self.prior_scheduler.step( | |
| predicted_image_embedding, | |
| timestep=t, | |
| sample=prior_latents, | |
| generator=generator, | |
| prev_timestep=prev_timestep, | |
| ).prev_sample | |
| prior_latents = self.prior.post_process_latents(prior_latents) | |
| image_embeddings = prior_latents | |
| output = self.decoder_pipe( | |
| image=image_embeddings, | |
| height=height, | |
| width=width, | |
| num_inference_steps=decoder_num_inference_steps, | |
| guidance_scale=decoder_guidance_scale, | |
| generator=generator, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| num_images_per_prompt=decoder_num_images_per_prompt, | |
| eta=decoder_eta, | |
| ) | |
| return output | |